5,578 research outputs found

    Strongly regular edge-transitive graphs

    Get PDF
    In this paper, we examine the structure of vertex- and edge-transitive strongly regular graphs, using normal quotient reduction. We show that the irreducible graphs in this family have quasiprimitive automorphism groups, and prove (using the Classification of Finite Simple Groups) that no graph in this family has a holomorphic simple automorphism group. We also find some constraints on the parameters of the graphs in this family that reduce to complete graphs.Comment: 23 page

    Bounding the size of a vertex-stabiliser in a finite vertex-transitive graph

    Get PDF
    In this paper we discuss a method for bounding the size of the stabiliser of a vertex in a GG-vertex-transitive graph Γ\Gamma. In the main result the group GG is quasiprimitive or biquasiprimitive on the vertices of Γ\Gamma, and we obtain a genuine reduction to the case where GG is a nonabelian simple group. Using normal quotient techniques developed by the first author, the main theorem applies to general GG-vertex-transitive graphs which are GG-locally primitive (respectively, GG-locally quasiprimitive), that is, the stabiliser GαG_\alpha of a vertex α\alpha acts primitively (respectively quasiprimitively) on the set of vertices adjacent to α\alpha. We discuss how our results may be used to investigate conjectures by Richard Weiss (in 1978) and the first author (in 1998) that the order of GαG_\alpha is bounded above by some function depending only on the valency of Γ\Gamma, when Γ\Gamma is GG-locally primitive or GG-locally quasiprimitive, respectively

    Twisted Permutation Codes

    Get PDF
    We introduce twisted permutation codes, which are frequency permutation arrays analogous to repetition permutation codes, namely, codes obtained from the repetition construction applied to a permutation code. In particular, we show that a lower bound for the minimum distance of a twisted permutation code is the minimum distance of a repetition permutation code. We give examples where this bound is tight, but more importantly, we give examples of twisted permutation codes with minimum distance strictly greater than this lower bound.Comment: 20 page

    Plasma kisspeptin levels are associated with insulin secretion in nondiabetic individuals

    Get PDF
    To evaluate if plasma kisspeptin concentrations are associated with insulin secretion, as suggested by recent in vitro studies, independently of confounders. 261 nondiabetic subjects were stratified into tertiles according to kisspeptin values. Insulin secretion was assessed using indexes derived from oral glucose tolerance test (OGTT). After adjusting for age, gender, and BMI, subjects in the highest (tertile 3) kisspeptin group exhibited significantly lower values of insulinogenic index, corrected insulin response (CIR30), and Stumvoll indexes for first-phase and second-phase insulin release as compared with low (tertile 1) or intermediate (tertile 2) kisspeptin groups. Univariate correlations between kisspeptin concentration and metabolic variables showed that kisspeptin concentration was significantly and positively correlated with age, blood pressure, and 2-h post-load glucose, and inversely correlated with BMI, and waist circumference. There was an inverse relationship between kisspeptin levels and OGTT-derived indexes of glucose-stimulated insulin secretion. A multivariable regression analysis in a model including all the variables significantly correlated with kisspeptin concentration showed thar age (β = -0.338, P<0.0001), BMI (β = 0.272, P<0.0001), 2-h post-load glucose (β = -0.229, P<0.0001), and kisspeptin (β = -0.105, P = 0.03) remained associated with insulinogenic index. These factors explained 34.6% of the variance of the insulinogenic index. In conclusion, kisspeptin concentrations are associated with insulin secretion independently of important determinants of glucose homeostasis such as gender, age, adiposity, 2-h post-load glucose, and insulin sensitivity

    3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability and habitability

    Full text link
    The inner edge of the classical habitable zone is often defined by the critical flux needed to trigger the runaway greenhouse instability. This 1D notion of a critical flux, however, may not be so relevant for inhomogeneously irradiated planets, or when the water content is limited (land planets). Here, based on results from our 3D global climate model, we find that the circulation pattern can shift from super-rotation to stellar/anti stellar circulation when the equatorial Rossby deformation radius significantly exceeds the planetary radius. Using analytical and numerical arguments, we also demonstrate the presence of systematic biases between mean surface temperatures or temperature profiles predicted from either 1D or 3D simulations. Including a complete modeling of the water cycle, we further demonstrate that for land planets closer than the inner edge of the classical habitable zone, two stable climate regimes can exist. One is the classical runaway state, and the other is a collapsed state where water is captured in permanent cold traps. We identify this "moist" bistability as the result of a competition between the greenhouse effect of water vapor and its condensation. We also present synthetic spectra showing the observable signature of these two states. Taking the example of two prototype planets in this regime, namely Gl581c and HD85512b, we argue that they could accumulate a significant amount of water ice at their surface. If such a thick ice cap is present, gravity driven ice flows and geothermal flux should come into play to produce long-lived liquid water at the edge and/or bottom of the ice cap. Consequently, the habitability of planets at smaller orbital distance than the inner edge of the classical habitable zone cannot be ruled out. Transiting planets in this regime represent promising targets for upcoming observatories like EChO and JWST.Comment: Accepted for publication in Astronomy and Astrophysics, complete abstract in the pdf, 18 pages, 18 figure

    Insulin-like growth factor-1 is a negative modulator of glucagon secretion

    Get PDF
    Glucagon secretion involves a combination of paracrine, autocrine, hormonal, and autonomic neural mechanisms. Type 2 diabetes often presents impaired glucagon suppression by insulin and glucose. Insulin-like growth factor-I (IGF-1) has elevated homology with insulin, and regulates pancreatic β-cells insulin secretion. Insulin and IGF-1 receptors share considerable structure homology and function. We hypothesized the existence of a mechanism linking the inhibition of α-cells glucagon secretion to IGF-1. Herein, we evaluated the association between plasma IGF-1 and glucagon levels in 116 nondiabetic adults. After adjusting for age gender and BMI, fasting glucagon levels were positively correlated with 2-h post-load glycaemia, HOMA index and fasting insulin, and were negatively correlated with IGF-1 levels. In a multivariable regression, the variables independently associated to fasting glucagon were circulating IGF-1 levels, HOMA index and BMI, explaining 20.7% variation. To unravel the molecular mechanisms beneath IGF-1 and glucagon association, we investigated whether IGF-1 directly modulates glucagon expression and secretion in an in vitro model of α-cells. Our data showed that IGF-1 inhibits the ability of low glucose concentration to stimulate glucagon expression and secretion via activation of the phosphatidylinositol-3-kinase/Akt/FoxO1 pathway. Collectively, our results suggest a new regulatory role of IGF-1 on α-cells biological function
    corecore