620 research outputs found

    Spatially valid proprioceptive cues improve the detection of a visual stimulus

    Get PDF
    Vision and proprioception are the main sensory modalities that convey hand location and direction of movement. Fusion of these sensory signals into a single robust percept is now well documented. However, it is not known whether these modalities also interact in the spatial allocation of attention, which has been demonstrated for other modality pairings. The aim of this study was to test whether proprioceptive signals can spatially cue a visual target to improve its detection. Participants were instructed to use a planar manipulandum in a forward reaching action and determine during this movement whether a near-threshold visual target appeared at either of two lateral positions. The target presentation was followed by a masking stimulus, which made its possible location unambiguous, but not its presence. Proprioceptive cues were given by applying a brief lateral force to the participant’s arm, either in the same direction (validly cued) or in the opposite direction (invalidly cued) to the on-screen location of the mask. The d′ detection rate of the target increased when the direction of proprioceptive stimulus was compatible with the location of the visual target compared to when it was incompatible. These results suggest that proprioception influences the allocation of attention in visual spac

    The role of the right temporoparietal junction in perceptual conflict: detection or resolution?

    Get PDF
    The right temporoparietal junction (rTPJ) is a polysensory cortical area that plays a key role in perception and awareness. Neuroimaging evidence shows activation of rTPJ in intersensory and sensorimotor conflict situations, but it remains unclear whether this activity reflects detection or resolution of such conflicts. To address this question, we manipulated the relationship between touch and vision using the so-called mirror-box illusion. Participants' hands lay on either side of a mirror, which occluded their left hand and reflected their right hand, but created the illusion that they were looking directly at their left hand. The experimenter simultaneously touched either the middle (D3) or the ring finger (D4) of each hand. Participants judged, which finger was touched on their occluded left hand. The visual stimulus corresponding to the touch on the right hand was therefore either congruent (same finger as touch) or incongruent (different finger from touch) with the task-relevant touch on the left hand. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the rTPJ immediately after touch. Accuracy in localizing the left touch was worse for D4 than for D3, particularly when visual stimulation was incongruent. However, following TMS, accuracy improved selectively for D4 in incongruent trials, suggesting that the effects of the conflicting visual information were reduced. These findings suggest a role of rTPJ in detecting, rather than resolving, intersensory conflict

    Genetic analysis of male reproductive success in relation to density in the zebrafish, Danio rerio

    Get PDF
    BACKGROUND: We used behavioural and genetic data to investigate the effects of density on male reproductive success in the zebrafish, Danio rerio. Based on previous measurements of aggression and courtship behaviour by territorial males, we predicted that they would sire more offspring than non-territorial males. RESULTS: Microsatellite analysis of paternity showed that at low densities territorial males had higher reproductive success than non-territorial males. However, at high density territorial males were no more successful than non-territorials and the sex difference in the opportunity for sexual selection, based on the parameter I(mates), was low. CONCLUSION: Male zebrafish exhibit two distinct mating tactics; territoriality and active pursuit of females. Male reproductive success is density dependent and the opportunity for sexual selection appears to be weak in this species

    Chemical and physical heterogeneity within native gold: implications for the design of gold particle studies

    Get PDF
    Studies of populations of gold particles are becoming increasingly common; however, interpretation of compositional data may not be straightforward. Natural gold is rarely homogenous. Alloy heterogeneity is present as microfabrics formed either during primary mineralization or by modification of pre-existing alloys by chemical and physical drivers during subsequent residence in either hypogene or surficial environments. In electron-probe-microanalysis (EPMA)-based studies, the combination of Cu, Hg, and Pd values and mineral inclusion suites may be diagnostic for source style of mineralization, but Ag alone is rarely sufficient. Gold characterization studies by laser-ablation-ICP mass spectrometry linked to both quadrupole and Time-of-Flight (ToF-MS) systems show that only Ag, Cu, and Hg form homogenous alloys with Au sufficiently often to act as generic discriminants. Where present, other elements are commonly distributed highly heterogeneously at the micron or submicron scale, either as mineral inclusions or in highly localized, but low concentrations. Drawing upon our own data derived from individual inspection and analyses of approximately 40,000 gold particles from 526 placer and in situ localities worldwide, we show that adequate characterization of gold from a specific locality normally requires study of a minimum of 150 particles via a two-stage approach comprising spatial characterization of compositional heterogeneity, plus crystallographic orientation mapping, that informs subsequent targeted acquisition of quantitative compositional data by EPMA and/or laser-ablation ICP-MS methods. Such data provide the platform to review current understanding of the genesis of gold particle characteristics, elevating future compositional studies from empirical descriptions to process-focused interpretations

    Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes

    Get PDF
    Copyright: © 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514

    Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites

    Get PDF
    Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur

    Keeping in Touch with One's Self: Multisensory Mechanisms of Self-Consciousness

    Get PDF
    BACKGROUND: The spatial unity between self and body can be disrupted by employing conflicting visual-somatosensory bodily input, thereby bringing neurological observations on bodily self-consciousness under scientific scrutiny. Here we designed a novel paradigm linking the study of bodily self-consciousness to the spatial representation of visuo-tactile stimuli by measuring crossmodal congruency effects (CCEs) for the full body. METHODOLOGY/PRINCIPAL FINDINGS: We measured full body CCEs by attaching four vibrator-light pairs to the trunks (backs) of subjects who viewed their bodies from behind via a camera and a head mounted display (HMD). Subjects made speeded elevation (up/down) judgments of the tactile stimuli while ignoring light stimuli. To modulate self-identification for the seen body subjects were stroked on their backs with a stick and the felt stroking was either synchronous or asynchronous with the stroking that could be seen via the HMD. We found that (1) tactile stimuli were mislocalized towards the seen body (2) CCEs were modulated systematically during visual-somatosensory conflict when subjects viewed their body but not when they viewed a body-sized object, i.e. CCEs were larger during synchronous than during asynchronous stroking of the body and (3) these changes in the mapping of tactile stimuli were induced in the same experimental condition in which predictable changes in bodily self-consciousness occurred. CONCLUSIONS/SIGNIFICANCE: These data reveal that systematic alterations in the mapping of tactile stimuli occur in a full body illusion and thus establish CCE magnitude as an online performance proxy for subjective changes in global bodily self-consciousness

    Rightward hemispheric asymmetries in auditory language cortex in children with autistic disorder: an MRI investigation

    Get PDF
    Purpose: determine if language disorder in children with autistic disorder (AD) corresponds to abnormalities in hemispheric asymmetries in auditory language cortex. Methods: MRI morphometric study in children with AD (n = 50) to assess hemispheric asymmetries in auditory language cortex. A key region of interest was the planum temporale (PT), which is larger in the left hemisphere in most healthy individuals. Results: (i) Heschl’s gyrus and planum polare showed typical hemisphere asymmetry patterns; (ii) posterior Superior Temporal Gyrus (pSTG) showed significant rightward asymmetry; and (iii) PT showed a trend for rightward asymmetry that was significant when constrained to right-handed boys (n = 30). For right-handed boys, symmetry indices for pSTG were significantly positively correlated with those for PT. PT asymmetry was age dependent, with greater rightward asymmetry with age. Conclusions: results provide evidence for rightward asymmetry in auditory association areas (pSTG and PT) known to subserve language processing. Cumulatively, our data provide evidence for a differing maturational path for PT for lower functioning children with AD, with both pre- and post-natal experience likely playing a role in PT asymmetry

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty
    corecore