1,551 research outputs found
Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC), version 4.0: User's manual
The information in the NASARC (Version 4.0) Technical Manual (NASA-TM-101453) and NASARC (Version 4.0) User's Manual (NASA-TM-101454) relates to the state of Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through November 1, 1988. The Technical Manual describes the NASARC concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions were incorporated in the Version 4.0 software over prior versions. These revisions have further enhanced the modeling capabilities of the NASARC procedure and provide improved arrangements of predetermined arcs within the geostationary orbit. Array dimensions within the software were structured to fit within the currently available 12-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 4.) allows worldwide planning problem scenarios to be accommodated within computer run time and memory constraints with enhanced likelihood and ease of solution
A laser communication experiment utilizing the ACT satellite and an airborne laser transceiver
The launch of a laser communication transmitter package into geosynchronous Earth orbit onboard the Advanced Communications Technology Satellite (ACTS) will present an excellent opportunity for the experimental reception of laser communication signals transmitted from a space orbit. The ACTS laser package includes both a heterodyne transmitter (Lincoln Labs design) and a direct detection transmitter (Goddard Space Flight Center design) with both sharing some common optical components. NASA Lewis Research Center's Space Electronics Division is planning to perform a space communication experiment utilizing the GSFC direct detection laser transceiver. The laser receiver will be installed within an aircraft provided with a glass port for the reception of the signal. This paper describes the experiment and the approach to performing such an experiment. Described are the constraints placed on the NASA Lewis experiment by the performance parameters of the laser transmitter and by the ACTS spacecraft operations. The conceptual design of the receiving terminal is given; also included is the anticipated capability of the detector
Numerical Arc Segmentation Algorithm for a Radio Conference-NASARC (version 4.0) technical manual
The information contained in the NASARC (Version 4.0) Technical Manual and NASARC (Version 4.0) User's Manual relates to the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through November 1, 1988. The Technical Manual describes the NASARC concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions were incorporated in the Version 4.0 software over prior versions. These revisions have further enhanced the modeling capabilities of the NASARC procedure and provide improved arrangements of predetermined arcs within the geostationary orbits. Array dimensions within the software were structured to fit within the currently available 12 megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 4.0) allows worldwide planning problem scenarios to be accommodated within computer run time and memory constraints with enhanced likelihood and ease of solution
Numerical arc segmentation algorithm for a radio conference-NASARC (version 2.0) technical manual
The information contained in the NASARC (Version 2.0) Technical Manual (NASA TM-100160) and NASARC (Version 2.0) User's Manual (NASA TM-100161) relates to the state of NASARC software development through October 16, 1987. The Technical Manual describes the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operating instructions. Significant revisions have been incorporated in the Version 2.0 software. These revisions have enhanced the modeling capabilities of the NASARC procedure while greatly reducing the computer run time and memory requirements. Array dimensions within the software have been structured to fit within the currently available 6-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 2.0) allows worldwide scenarios to be accommodated within these memory constraints while at the same time effecting an overall reduction in computer run time
A technology assessment of alternative communications systems for the space exploration initiative
Telecommunications, Navigation, and Information Management (TNIM) services are vital to accomplish the ambitious goals of the Space Exploration Initiative (SEI). A technology assessment is provided for four alternative lunar and Mars operational TNIM systems based on detailed communications link analyses. The four alternative systems range from a minimum to a fully enhanced capability and use frequencies from S-band, through Ka-band, and up to optical wavelengths. Included are technology development schedules as they relate to present SEI mission architecture time frames
Human Interpretation of Trade-Off Diagrams in Multi-Objective Problems: Implications for Developing Interactive Decision Support Systems
The growing need for efficient and effective human decision-makers warrants a better understanding of how decision support systems (DSS) guide users to improved decisions. Decision support approaches utilize visual aids to assist decision-making, including trade-off diagrams. These visualizations help comprehension of key trade-offs among decision alternatives. However, little is known about the role of trade-off diagrams in human decision-making and the best way to present them. Here, we discuss an empirical study with two goals: 1) evaluating DSS interactivity and 2) identifying decision-making strategies with trade-off diagrams. We specifically investigate the value of interface interactivity and problem context as users make nine increasingly complex decisions. Our results suggest that problem context and interactivity separately influence ability to navigate trade-off diagrams
Examining Periodic Solar Wind Density Structures Observed in the SECCHI Heliospheric Imagers
We present an analysis of small-scale, periodic, solar-wind density
enhancements (length-scales as small as \approx 1000 Mm) observed in images
from the Heliospheric Imager (HI) aboard STEREO A. We discuss their possible
relationship to periodic fluctuations of the proton density that have been
identified at 1 AU using in-situ plasma measurements. Specifically, Viall,
Kepko, and Spence (2008) examined 11 years of in-situ solar-wind density
measurements at 1 AU and demonstrated that not only turbulent structures, but
also non-turbulent periodic density structures exist in the solar wind with
scale sizes of hundreds to one thousand Mm. In a subsequent paper, Viall,
Spence, and Kasper (2009) analyzed the {\alpha} to proton solar-wind abundance
ratio measured during one such event of periodic density structures,
demonstrating that the plasma behavior was highly suggestive that either
temporally or spatially varying coronal source plasma created those density
structures. Large periodic density structures observed at 1 AU, which were
generated in the corona, can be observable in coronal and heliospheric
white-light images if they possess sufficiently high density contrast. Indeed,
we identify such periodic density structures as they enter the HI field of view
and follow them as they advect with the solar wind through the images. The
smaller periodic density structures that we identify in the images are
comparable in size to the larger structures analyzed in-situ at 1 AU, yielding
further evidence that periodic density enhancements are a consequence of
coronal activity as the solar wind is formed.Comment: 15 pages, 12 figures. The final publication is available at
http://www.springerlink.co
White matter changes and confrontation naming in retired aging national football league athletes
Using diffusion tensor imaging (DTI), we assessed the relationship of white matter integrity and performance on the Boston Naming Test (BNT) in a group of retired professional football players and a control group. We examined correlations between fractional anisotropy (FA) and mean diffusivity (MD) with BNT T-scores in an unbiased voxelwise analysis processed with tract-based spatial statistics (TBSS). We also analyzed the DTI data by grouping voxels together as white matter tracts and testing each tract's association with BNT T-scores. Significant voxelwise correlations between FA and BNT performance were only seen in the retired football players (p < 0.02). Two tracts had mean FA values that significantly correlated with BNT performance: forceps minor and forceps major. White matter integrity is important for distributed cognitive processes, and disruption correlates with diminished performance in athletes exposed to concussive and subconcussive brain injuries, but not in controls without such exposure
- …