9 research outputs found
CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles
Calcium-activator protein for secretion (CAPS) is a cytosolic protein that associates with large dense-core vesicles and is involved in their secretion. Mammals express two CAPS isoforms, which share a similar domain structure including a Munc13 homology domain that is believed to be involved in the priming of secretory vesicles. A variety of studies designed to perturb CAPS function indicate that CAPS is involved in the secretion of large dense-core vesicles, but where in the secretory pathway CAPS acts is still under debate. Mice in which one allele of the CAPS-1 gene is deleted exhibit a deficit in catecholamine secretion from chromaffin cells. We have examined catecholamine secretion from chromaffin cells in which both CAPS genes were deleted and show that the deletion of both CAPS isoforms causes a strong reduction in the pool of rapidly releasable chromaffin granules and of sustained release during ongoing stimulation. We conclude that CAPS is required for the adequate refilling and/or maintenance of a rapidly releasable granule pool
Synapsins I and II Are Not Required for Insulin Secretion from Mouse Pancreatic beta-cells
Synapsins are a family of phosphoproteins that modulate the release of neurotransmitters from synaptic vesicles. The release of insulin from pancreatic beta-cells has also been suggested to be regulated by synapsins. In this study, we have utilized a knock out mouse model with general disruptions of the synapsin I and II genes [synapsin double knockout (DKO)]. Stimulation with 20 mM glucose increased insulin secretion 9-fold in both wild-type (WT) and synapsin DKO islets, whereas secretion in the presence of 70 mM K+ and 1mM glucose was significantly enhanced in the synapsin DKO mice compared to WT. Exocytosis in single beta-cells was investigated using patch clamp. The exocytotic response, measured by capacitance measurements and elicited by a depolarization protocol designed to visualize exocytosis of vesicles from the readily releasable pool and from the reserve pool, was of the same size in synapsin DKO and WT beta-cells. The increase in membrane capacitance corresponding to readily releasable pool was approximately 50fF in both genotypes. We next investigated the voltage-dependent Ca2+ influx. In both WT and synapsin DKO beta-cells the Ca2+ current peaked at 0 mV and measured peak current (I-p) and net charge (Q) were of similar magnitude. Finally, ultrastructural data showed no variation in total number of granules (N-v) or number of docked granules (N-s) between the beta-cells from synapsin DKO mice and WT control. We conclude that neither synapsin I nor synapsin II are directly involved in the regulation of glucose-stimulated insulin secretion and Ca-2-dependent exocytosis in mouse pancreatic beta-cells. (Endocrinology 153: 2112-2119, 2012
CAPS1 Regulates Catecholamine Loading of Large Dense-Core Vesicles
SummaryCAPS1 is thought to play an essential role in mediating exocytosis from large dense-core vesicles (LDCVs). We generated CAPS1-deficient (KO) mice and studied exocytosis in a model system for Ca2+-dependent LDCV secretion, the adrenal chromaffin cell. Adult heterozygous CAPS1 KO cells display a gene dosage-dependent decrease of CAPS1 expression and a concomitant reduction in the number of docked vesicles and secretion. Embryonic homozygous CAPS1 KO cells show a strong reduction in the frequency of amperometrically detectable release events of transmitter-filled vesicles, while the total number of fusing vesicles, as judged by capacitance recordings or total internal reflection microscopy, remains unchanged. We conclude that CAPS1 is required for an essential step in the uptake or storage of catecholamines in LDCVs
Differences in islet-enriched miRNAs in healthy and glucose intolerant human subjects.
Many microRNAs (miRNAs) are known to be cell-type specific and are implicated in development of diseases. We investigated the global expression pattern of miRNAs in human pancreatic islets compared to liver and skeletal muscle, using bead-based technology and quantitative RT-PCR. In addition to the known islet-specific miR-375, we also found enrichment of miR-127-3p, miR-184, miR-195 and miR-493∗ in the pancreatic islets. The expression of miR-375, miR-127-3p, miR-184 and the liver-enriched miR-122 were positively correlated to insulin biosynthesis, while the expression of miR-127-3p and miR-184 were negatively correlated to glucose-stimulated insulin secretion (GSIS). These correlations were absent in islets of glucose intolerant donors (HbA1c⩾6.1). We suggest the presence of an islet-specific miRNA network, which consists of at least miR-375, miR-127-3p and miR-184, potentially involved in insulin secretion. Our results provide new insight into miRNA-mediated regulation of insulin secretion in healthy and glucose intolerant subjects
CAPS1 and CAPS2 Regulate Stability and Recruitment of Insulin Granules in Mouse Pancreatic beta Cells.
CAPS1 and CAPS2 regulate dense-core vesicle release of transmitters and hormones in neuroendocrine cells, but their precise roles in the secretory process remain enigmatic. Here we show that CAPS2(-/-) and CAPS1(+/-);CAPS2(-/-) mice, despite having increased insulin sensitivity, are glucose intolerant and that this effect is attributable to a marked reduction of glucose-induced insulin secretion. This correlates with diminished Ca(2+)-dependent exocytosis, a reduction in the size of the morphologically docked pool, a decrease in the readily releasable pool of secretory vesicles, slowed granule priming, and suppression of second-phase (but not first-phase) insulin secretion. In beta cells of CAPS1(+/-);CAPS2(-/-) mice, the lowered insulin content and granule numbers were associated with an increase in lysosome numbers and lysosomal enzyme activity. We conclude that although CAPS proteins are not required for Ca(2+)-dependent exocytosis to proceed, they exert a modulatory effect on insulin granule priming, exocytosis, and stability
Beta-cell specific deletion of dicer1 leads to defective insulin secretion and diabetes mellitus
Mature microRNAs (miRNAs), derived through cleavage of pre-miRNAs by the Dicer1 enzyme, regulate protein expression in many cell-types including cells in the pancreatic islets of Langerhans. To investigate the importance of miRNAs in mouse insulin secreting beta-cells, we have generated mice with a beta-cells specific disruption of the Dicer1 gene using the Cre-lox system controlled by the rat insulin promoter (RIP). In contrast to their normoglycaemic control littermates (RIP-Cre(+/-) Dicer1(Delta/wt)), RIP-Cre(+/-) Dicer1(flox/flox) mice (RIP-Cre Dicer1(Delta/Delta)) developed progressive hyperglycaemia and full-blown diabetes mellitus in adulthood that recapitulated the natural history of the spontaneous disease in mice. Reduced insulin gene expression and concomitant reduced insulin secretion preceded the hyperglycaemic state and diabetes development. Immunohistochemical, flow cytometric and ultrastructural analyses revealed altered islet morphology, marked decreased beta-cell mass, reduced numbers of granules within the beta-cells and reduced granule docking in adult RIP-Cre Dicer1(Delta/Delta) mice. beta-cell specific Dicer1 deletion did not appear to disrupt fetal and neonatal beta-cell development as 2-week old RIP-Cre Dicer1(Delta/Delta) mice showed ultrastructurally normal beta-cells and intact insulin secretion. In conclusion, we have demonstrated that a beta-cell specific disruption of the miRNAs network, although allowing for apparently normal beta-cell development, leads to progressive impairment of insulin secretion, glucose homeostasis and diabetes development