233 research outputs found
Geoglossomycetes cl. nov., Geoglossales ord. nov. and taxa above class rank in the Ascomycota Tree of Life
Featuring a high level of taxon sampling across Ascomycota, we evaluate a multi-gene phylogeny and propose a novel order and class in Ascomycota. We describe two new taxa, Geoglossomycetes and Geoglossales, to host three earth tongue genera: Geoglossum, Trichoglossum and Sarcoleotia as a lineage of ‘Leotiomyceta’. Correspondingly, we confirm that these genera are not closely related to the genera Neolecta, Mitrula, Cudonia, Microglossum, Thuemenidum, Spathularia and Bryoglossum, all of which have been previously placed within the Geoglossaceae. We also propose a non-hierarchical system for naming well-resolved nodes, such as ‘Saccharomyceta’, ‘Dothideomyceta’, and ‘Sordariomyceta’ for supraordinal nodes, within the current phylogeny, acting as rankless taxa. As part of this revision, the continued use of ‘Leotiomyceta’, now as a rankless taxon, is proposed
Detection and Identification of Fungi Intimately Associated with the Brown Seaweed Fucus serratus
The filamentous fungi associated with healthy and decaying Fucus serratus thalli were studied over a 1-year period using isolation methods and molecular techniques such as 28S rRNA gene PCR-denaturing gradient gel electrophoresis (DGGE) and phylogenetic and real-time PCR analyses. The predominant DGGE bands obtained from healthy algal thalli belonged to the Lindra, Lulworthia, Engyodontium, Sigmoidea/Corollospora complex, and Emericellopsis/Acremonium-like ribotypes. In the culture-based analysis the incidence of recovery was highest for Sigmoidea marina isolates. In general, the environmental sequences retrieved could be matched unambiguously to isolates recovered from the seaweed except for the Emericellopsis/Acremonium-like ribotype, which showed 99% homology with the sequences of four different isolates, including that of Acremonium fuci. To estimate the extent of colonization of A. fuci, we used a TaqMan real-time quantitative PCR assay for intron 3 of the beta-tubulin gene, the probe for which proved to be species specific even when it was used in amplifications with high background concentrations of other eukaryotic DNAs. The A. fuci sequence was detected with both healthy and decaying thalli, but the signal was stronger for the latter. Additional sequence types, representing members from the Dothideomycetes, were recovered from the decaying thallus DNA, which suggested that a change in fungal community structure had occurred. Phylogenetic analysis of these environmental sequences and the sequences of isolates and type species indicated that the environmental sequences were novel in the Dothideomycetes
Recommended from our members
Orbilia ultrastructure, character evolution and phylogeny of Pezizomycotina
Molecular phylogenctic analyses indicate that the monophyletic classes Orbiliomycetes and Pezizomycetes are among the earliest diverging branches of Pezizomycotina, the largest subphylum of the Ascomycota. Although Orbiliomycetes is resolved as the most basal lineage in some analyses, molecular support for the node resolving the relationships between the two classes is low and topologies are unstable. We provide ultrastructural evidence to inform the placement of Orbiliomycetes by studying an Orbilia, a member of the only order (Orbiliales) of the class. The truncate ascus apex in the Orbilia is thin-walled except at the margin, and an irregular wall rupture of the apex permits ascospore discharge. Ascus, ascogenous and non-ascogenous hyphae were simple septate, with septal pores plugged by unelaborated electron-dense, non-membranous occlusions. Globose Woronin bodies were located on both sides of the septum. Nuclear division was characterized by the retention of an intact nuclear envelope, and a twolayered disk-shaped spindle pole body. The less differentiated nature of the spore discharge apparatus and septal pore organization supports an earliest diverging position of Orbiliomycetes within the subphylum, while the closed nuclear division and diskshaped spindle pole body are interpreted as ancestral state characters for Ascomycota.Keywords: systematics, evolution, morphology, Ascomycota, ultrastructureKeywords: systematics, evolution, morphology, Ascomycota, ultrastructur
101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens.
Dothideomycetes is the largest class of kingdom Fungi and comprises an incredible diversity of lifestyles, many of which have evolved multiple times. Plant pathogens represent a major ecological niche of the class Dothideomycetes and they are known to infect most major food crops and feedstocks for biomass and biofuel production. Studying the ecology and evolution of Dothideomycetes has significant implications for our fundamental understanding of fungal evolution, their adaptation to stress and host specificity, and practical implications with regard to the effects of climate change and on the food, feed, and livestock elements of the agro-economy. In this study, we present the first large-scale, whole-genome comparison of 101 Dothideomycetes introducing 55 newly sequenced species. The availability of whole-genome data produced a high-confidence phylogeny leading to reclassification of 25 organisms, provided a clearer picture of the relationships among the various families, and indicated that pathogenicity evolved multiple times within this class. We also identified gene family expansions and contractions across the Dothideomycetes phylogeny linked to ecological niches providing insights into genome evolution and adaptation across this group. Using machine-learning methods we classified fungi into lifestyle classes with >95 % accuracy and identified a small number of gene families that positively correlated with these distinctions. This can become a valuable tool for genome-based prediction of species lifestyle, especially for rarely seen and poorly studied species
Recommended from our members
Metagenome sequence of Elaphomyces granulatus from sporocarp tissue reveals Ascomycota ectomycorrhizal fingerprints of genome expansion and a Proteobacteria-rich microbiome
Many obligate symbiotic fungi are difficult to maintain in culture, and there is a growing need for alternative approaches to obtaining tissue and subsequent genomic assemblies from such species. In this study, the genome of Elaphomyces granulatus was sequenced from sporocarp tissue. The genome assembly remains on many contigs, but gene space is estimated to be mostly complete. Phylogenetic analyses revealed that the Elaphomyces lineage is most closely related to Talaromyces and Trichocomaceae s.s. The genome of E. granulatus is reduced in carbohydrate-active enzymes, despite a large expansion in genome size, both of which are consistent with what is seen in Tuber melanosporum, the other sequenced ectomycorrhizal ascomycete. A large number of transposable elements are predicted in the E. granulatus genome, especially Gypsy-like long terminal repeats, and there has also been an expansion in helicases. The metagenome is a complex community dominated by bacteria in Bradyrhizobiaceae, and there is evidence to suggest that the community may be reduced in functional capacity as estimated by KEGG pathways. Through the sequencing of sporocarp tissue, this study has provided insights into Elaphomyces phylogenetics, genomics, metagenomics and the evolution of the ectomycorrhizal association.This is the publisher’s final pdf. The article is copyrighted by the Society for Applied Microbiology and John Wiley & Sons, Ltd. It is published by John Wiley & Sons, Ltd. and can be found at: http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291462-292
New 1F1N Species Combinations in Ophiocordycipitaceae (Hypocreales)
Abstract
Based on the taxonomic and nomenclatural recommendations of Quandt et al. (2014) new species combinations are made for Ophiocordycipitaceae. These new combinations are compliant with recent changes in the International Code of Nomenclature for algae, fungi, and plants (ICN) and the abolition of the dual system of nomenclature for fungi. These changes include 10 new combinations into Drechmeria, four new combinations into Harposporium, 23 new combinations and 15 synonymies in Ophiocordyceps, and one new combination into Purpureocillium.https://deepblue.lib.umich.edu/bitstream/2027.42/149189/1/43008_2015_Article_602357.pd
Botryosphaeria dothidea : a latent pathogen of global importance to woody plant health
Botryosphaeria dothidea is the type species of Botryosphaeria (Botryosphaeriaceae,
Botryosphaeriales). Fungi residing in this order are amongst the most widespread and
important canker and dieback pathogens of trees worldwide, with B. dothidea one of
the most common species on a large number of hosts. Its taxonomic circumscription
has undergone substantial change in the past decade, making it difficult to interpret
the large volume of literature linked to the name B. dothidea. This pathogen profile
synthesises the current understanding of B. dothidea pertaining to its distribution, host
associations and its role as a pathogen in managed and natural woody environments.
The prolonged latent infection or endophytic phase is of particular importance as it
implies that the fungus can easily pass undetected by quarantine systems in traded
living plants, fruits and other plant parts. Infections typically become obvious only
under conditions of host stress, when disease symptoms develop. This study also
considers the knowledge emerging from the recently sequenced B. dothidea genome
elucidating previously unknown aspects of the species, including mating and hostinfection
strategies. Despite more than 150 years of research on B. dothidea, there is
clearly much to be learned regarding this global tree pathogen. This is increasingly
important given the stresses imposed on various woody hosts due to climate change.The National Research Foundation (NRF) of South Africa and members of the Tree Protection Co-operative Programme (TPCP).http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1364-37032018-05-31hb2017GeneticsMicrobiology and Plant Patholog
Full genome of Phialocephala scopiformis DAOMC 229536, a fungal endophyte of spruce producing the potent anti-insectan compound rugulosin
We present the full genome of Phialocephala scopiformis DAOMC 229536 (Helotiales, Ascomycota), a foliar endophyte of white spruce from eastern Quebec. DAOMC 229536 produces the anti-insectan compound rugulosin, which inhibits a devastating forestry pest, the spruce budworm. This genome will enable fungal genotyping and host-endophyte evolutionary genomics in inoculated trees
Recommended from our members
The Genome of Tolypocladium inflatum: Evolution, Organization, and Expression of the Cyclosporin Biosynthetic Gene Cluster
The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role of secondary metabolite gene clusters and their metabolites in fungal biology
- …