4 research outputs found

    100 GHz electrically tunable planar Bragg grating via nematic liquid crystal overlay towards reconfigurable WDM networks

    No full text
    Novel liquid crystal-based integrated optical devices with >140GHz electrical tuning are presented for application towards reconfigurable wavelength division multiplexing (WDM) networks. Initial results with Bragg wavelength tuning covering five 25GHz WDM channel spacing have been achieved with 170V (peak-to-peak) sinusoidal voltages applied across electro-patterned ITO-covered glass electrodes placed 60µm apart. These prototype devices were fabricated using direct UV grating writing, with an evanescent field coupling into a liquid crystal overlay through an etched window. Electrically controlled liquid crystal birefringence modifies the waveguide effective index, resulting in Bragg wavelength shift. Merck 18523 nematic liquid crystals are used, exhibiting compatible refractive index values to that of silica (no=1.44, ne=1.49 at lambda=1550nm). Homeotropic alignment of the liquid crystal is provided by application of a surfactant layer.The inherent refractive index sensitivity of our etched direct-UV-written structures allows observation of previously unreported liquid crystal surface-behaviour, such as multi-threshold points during variation of the applied field. Continued optimisation based on evanescent field penetration, electrode layout, and surface interaction will allow implementation towards a variety of novel liquid crystal applications and devices. For example, a cascaded architecture of these integrated liquid crystal devices operating at different Bragg wavelengths would pave the way towards true colorless add/drop modules for dense optical networks

    Physical observation of single step UV-written integrated planar Bragg structures and their application as refractive-index sensors

    No full text
    We present what is to our knowledge the first demonstration of a potentially low-cost refractive-index sensor based on UV processing. A channel waveguide and a Bragg grating are defined in a single UV processing step, resulting in a buried structure with a well-defined grating period. A subsequent wet etch process located over the Bragg grating opens a sensing window in the device and reveals the grating structure. Sensitivity of as much as 5×10-6 was inferred from our device

    Planar waveguide tilted Bragg grating refractometer fabricated through physical micromachining and direct UV writing

    No full text
    A set of rapid prototyping techniques are combined to construct a laterally-tilted Bragg grating refractometer in a novel planar geometry. The tilted Bragg grating is fabricated in a silica-on-silicon planar substrate using a dual beam direct UV writing (DUW) technique. Lateral cladding mode confinement is subsequently achieved by physically micromachining two trenches either side of the direct UV written waveguide. The resulting device is demonstrated as an effective refractometer, displaying a comparable sensitivity to tilted Bragg gratings in a fiber optical geometry, but with the added advantages of planar integration

    Demonstration and accurate beam propagation method modeling of direct UV written shallow angle X-couplers

    No full text
    BPM modeling of UV written X-couplers shows excellent agreement with measured data by careful choice of launch conditions, index values and allowance for hydrogen outdiffusion effects. Comparison with recent analytical model is also presented
    corecore