490 research outputs found

    Re-expression of ARHI (DIRAS3) induces autophagy in breast cancer cells and enhances the inhibitory effect of paclitaxel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>ARHI </it>is a Ras-related imprinted gene that inhibits cancer cell growth and motility. ARHI is downregulated in the majority of breast cancers, and loss of its expression is associated with its progression from ductal carcinoma <it>in situ </it>(DCIS) to invasive disease. In ovarian cancer, re-expression of ARHI induces autophagy and leads to autophagic death in cell culture; however, ARHI re-expression enables ovarian cancer cells to remain dormant when they are grown in mice as xenografts. The purpose of this study is to examine whether ARHI induces autophagy in breast cancer cells and to evaluate the effects of ARHI gene re-expression in combination with paclitaxel.</p> <p>Methods</p> <p>Re-expression of ARHI was achieved by transfection, by treatment with trichostatin A (TSA) or by a combination of TSA and 5-aza-2'-deoxycytidine (DAC) in breast cancer cell cultures and by liposomal delivery of ARHI in breast tumor xenografts.</p> <p>Results</p> <p>ARHI re-expression induces autophagy in breast cancer cells, and ARHI is essential for the induction of autophagy. When ARHI was re-expressed in breast cancer cells treated with paclitaxel, the growth inhibitory effect of paclitaxel was enhanced in both the cell culture and the xenografts. Although paclitaxel alone did not induce autophagy in breast cancer cells, it enhanced ARHI-induced autophagy. Conversely, ARHI re-expression promoted paclitaxel-induced apoptosis and G2/M cell cycle arrest.</p> <p>Conclusions</p> <p>ARHI re-expression induces autophagic cell death in breast cancer cells and enhances the inhibitory effects of paclitaxel by promoting autophagy, apoptosis, and G2/M cell cycle arrest.</p

    International Web-based consultation on priorities for translational breast cancer research

    Get PDF
    Background Large numbers of translational breast cancer research topics have been completed or are underway, but they differ widely in their immediate and/or future importance to clinical management. We therefore conducted an international Web-based consultation of breast cancer professionals to identify the topics most widely considered to be of highest priority. Methods Potential participants were contacted via two large e-mail databases and asked to register, at a Web site, the issues that they felt to be of highest priority. Four hundred nine questions were reduced by a steering committee to 70 unique issues, and registrants were asked to select the 6 questions they considered to be the most important. Results Votes were recorded from 420 voters ( 2,520 votes) from 48 countries, with 48% of voters coming from North America. Half of the voters identified themselves as clinicians, with the remainder being academics, research scientists, or pathologists. The highest priority was to identify molecular signatures to select patients who could be spared chemotherapy, which gained about 50% more votes than the second topic and was consistently voted top by voters in North America, Europe, and the rest of the world. Research scientists voted the determination of the role of stem cells in breast cancer development, progression, and treatment sensitivity as the most important issue, but this was considered the sixth priority for clinicians and fourth overall. Conclusion This exercise may bring a greater focus of research resources onto issues voted as top priorities

    Liposome-based drug delivery in breast cancer treatment

    Get PDF
    Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies

    Combinatorial experimental protocols for Erbicin-derived immunoagents and Herceptin

    Get PDF
    Erbicin is a human anti-ErbB2 single-chain antibody fragment with high affinity and selectivity for ErbB2-positive cancer cells. Two anti-ErbB2 immunoconjugates, called Erb-hRNase and Erb-hcAb, have been prepared and found to be selectively cytotoxic on ErbB2-positive cancer cells in vitro and vivo. In Erb-hRNase, Erbicin is linked to a human RNase and in Erb-hcAb it is linked to the key structural and functional regions of a human IgG. Herceptin is an anti-ErbB2 humanised antibody successfully used in the immunotherapy of breast cancer. We report here that the Erbicin-derived immunoagents target on breast cancer cells an ErbB2 epitope different than that of Herceptin. This finding led us to verify the effects of Herceptin on breast cancer cells when it was used in combination with the Erbicin-derived immunoagents. The results indicated that in combination experiments the antitumour action of Herceptin and that of the novel agents were significantly increased in an additive fashion. An inspection of the mechanism of action of Erb-hRNase or Erb-hcAb combined with Herceptin provided evidence that the antibody combinations engendered an increased downregulation of the ErbB2 receptor, and led to an enhanced apoptotic cell death

    Transcriptional Shift Identifies a Set of Genes Driving Breast Cancer Chemoresistance

    Get PDF
    Background Distant recurrences after antineoplastic treatment remain a serious problem for breast cancer clinical management, which threats patients’ life. Systemic therapy is administered to eradicate cancer cells from the organism, both at the site of the primary tumor and at any other potential location. Despite this intervention, a significant proportion of breast cancer patients relapse even many years after their primary tumor has been successfully treated according to current clinical standards, evidencing the existence of a chemoresistant cell subpopulation originating from the primary tumor.Methods/Findings To identify key molecules and signaling pathways which drive breast cancer chemoresistance we performed gene expression analysis before and after anthracycline and taxane-based chemotherapy and compared the results between different histopathological response groups (good-, mid- and bad-response), established according to the Miller & Payne grading system. Two cohorts of 33 and 73 breast cancer patients receiving neoadjuvant chemotherapy were recruited for whole-genome expression analysis and validation assay, respectively. Identified genes were subjected to a bioinformatic analysis in order to ascertain the molecular function of the proteins they encode and the signaling in which they participate. High throughput technologies identified 65 gene sequences which were over-expressed in all groups (P ≤ 0·05 Bonferroni test). Notably we found that, after chemotherapy, a significant proportion of these genes were over-expressed in the good responders group, making their tumors indistinguishable from those of the bad responders in their expression profile (P ≤ 0.05 Benjamini-Hochgerg`s method).Conclusions These data identify a set of key molecular pathways selectively up-regulated in post-chemotherapy cancer cells, which may become appropriate targets for the development of future directed therapies against breast cancer.Thanks are due to the Consejería de Economia, Innovación y Ciencia (CEIC) from the Junta de Andalucía and Fondo Europeo de Desarrollo Regional (FEDER)/Fondo de Cohesión Europeo (FSE) to financial support through the Programa Operativo FEDER/FSE de Andalucía 2007-2013 and the research project CTS-5350. The authors also acknowledge financial support by the PN de I+D+i 2006-2009/ISCIII/Ministerio de Sanidad, Servicios Sociales e Igualdad (Spain) and Fondo Europeo de Desarrollo Regional (FEDER) from the European Union, through the research project PI06/90388

    Prognostic impact of human epidermal growth factor-like receptor 2 and hormone receptor status in inflammatory breast cancer (IBC): analysis of 2,014 IBC patient cases from the California Cancer Registry

    Get PDF
    IntroductionInflammatory breast cancer (IBC) is an aggressive form of breast cancer associated with overexpression of Her2/Neu (human epidermal growth factor-like receptor 2 (HER2)) and poor survival. We investigated survival differences for IBC patient cases based on hormone receptor status and HER2 receptor status using data from the California Cancer Registry, as contrasted with locally advanced breast cancer (LABC), metastatic breast cancer (MBC) and non-T4 breast cancer.MethodsA case-only analysis of 80,099 incident female breast cancer patient cases in the California Cancer Registry during 1999 to 2003 was performed, with follow-up through March 2007. Overall survival (OS) and breast cancer-specific survival (BC-SS) were analyzed using Kaplan-Meier methods and Cox proportional hazards ratios.ResultsA total of 2,014 IBC, 1,268 LABC, 3,059 MBC, and 73,758 non-T4 breast cancer patient cases were identified. HER2+ was associated with advanced tumor stage (P &lt; 0.0001). IBC patient cases were more likely to be HER2+ (40%) and less likely to be hormone receptor-positive (HmR+) (59%) compared with LABC (35% and 69%, respectively), MBC (35% and 74%), and non-T4 patient cases (22% and 82%). HmR+ status was associated with improved OS and BC-SS for each breast cancer subtype after adjustment for clinically relevant factors. In multivariate analysis, HER2+ (versus HER2-) status was associated with poor BC-SS for non-T4 patient cases (hazards ratio = 1.16, 95% confidence interval 1.05 to 1.28) and had a borderline significant association with improved BC-SS for IBC (hazards ratio = 0.82, 95% confidence interval = 0.68 to 0.99).ConclusionsDespite an association with advanced tumor stage, HER2+ status is not an independent adverse prognostic factor for survival among IBC patient cases

    Obesity and survival in operable breast cancer patients treated with adjuvant anthracyclines and taxanes according to pathological subtypes: a pooled analysis

    Get PDF
    IntroductionObesity is an unfavorable prognostic factor in breast cancer (BC) patients regardless of menopausal status and treatment received. However, the association between obesity and survival outcome by pathological subtype requires further clarification.MethodsWe performed a retrospective analysis including 5,683 operable BC patients enrolled in four randomized clinical trials (GEICAM/9906, GEICAM/9805, GEICAM/2003–02, and BCIRG 001) evaluating anthracyclines and taxanes as adjuvant treatments. Our primary aim was to assess the prognostic effect of body mass index (BMI) on disease recurrence, breast cancer mortality (BCM), and overall mortality (OM). A secondary aim was to detect differences of such prognostic effects by subtype.ResultsMultivariate survival analyses adjusting for age, tumor size, nodal status, menopausal status, surgery type, histological grade, hormone receptor status, human epidermal growth factor receptor 2 (HER2) status, chemotherapy regimen, and under-treatment showed that obese patients (BMI 30.0 to 34.9) had similar prognoses to that of patients with a BMI < 25 (reference group) in terms of recurrence (Hazard Ratio [HR] = 1.08, 95% Confidence Interval [CI] = 0.90 to 1.30), BCM (HR = 1.02, 0.81 to 1.29), and OM (HR = 0.97, 0.78 to 1.19). Patients with severe obesity (BMI ≥ 35) had a significantly increased risk of recurrence (HR = 1.26, 1.00 to 1.59, P = 0.048), BCM (HR = 1.32, 1.00 to 1.74, P = 0.050), and OM (HR = 1.35, 1.06 to 1.71, P = 0.016) compared to our reference group. The prognostic effect of severe obesity did not vary by subtype.ConclusionsSeverely obese patients treated with anthracyclines and taxanes present a worse prognosis regarding recurrence, BCM, and OM than patients with BMI < 25. The magnitude of the harmful effect of BMI on survival-related outcomes was similar across subtypes

    BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells

    Get PDF
    Germline mutations of the tumour suppressor gene BRCA1 are involved in the predisposition and development of breast cancer and account for 20–45% of all hereditary cases. There is an increasing evidence that these tumours are characterised by a specific phenotype and pattern of gene expression. We have hypothesised that differences in chemosensitivity might parallel molecular heterogeneity of hereditary and sporadic breast tumours. To this end, we have investigated the chemosensitivity of the BRCA1-defective HCC1937 breast cancer cell line, and the BRCA1-competent MCF-7 (hormone-sensitive) and MDA-MB231 (hormone-insensitive) breast cancer cell lines using the MTT assay. The 50% inhibitory concentration (IC50) for the individual compounds were derived by interpolate plot analysis of the logarithmic scalar concentration curve after a 48 h exposure. HCC1937 cells were significantly (P<0.005) more sensitive to cisplatin (CDDP) (IC50 : 30–40 μM) compared with MCF-7 (IC50 : 60–70 μM) and MDA-MB231 (IC50 : 90–100 μM) cells. On the other hand, BRCA1-defective breast cancer cells were significantly less sensitive to doxorubicin (Dox) (IC50 : 45–50 μM) compared with MCF-7 (IC50 : 1–5 μM) and MDA-MB231 (IC50 : 5–10 μM) (P<0.02), as well as to paclitaxel (Tax) (IC50 : >2 μM for HCC1937, 0.1–0.2 μM for MCF-7 and 0.01–0.02 μM for MDA-MB231) (P<0.001). Full-length BRCA1 cDNA transfection of BRCA1-defective HCC1937 cells led to the reconstituted expression of BRCA1 protein in HCC1937/WTBRCA1-derived cell clone, but did not reduce tumour cell growth in soft agar. BRCA1 reconstitution reverted the hypersensitivity to CDDP (P<0.02), and restored the sensitivity to Dox (P<0.05) and Tax (P<0.001), compared with parental HCC1937 cells. Taken together, our findings suggest a specific chemosensitivity profile of BRCA1-defective cells in vitro, which is dependent on BRCA1 protein expression, and suggest prospective preclinical and clinical investigation for the development of tailored therapeutical approaches in this setting
    corecore