83 research outputs found
Development and testing of hermetic, laser-ignited pyrotechnic and explosive components
During the last decade there has been increasing interest in the use of lasers in place of electrical systems to ignite various pyrotechnic and explosive materials. The principal driving force for this work was the requirement for safer energetic components which would be insensitive to electrostatic and electromagnetic radiation. In the last few years this research has accelerated since the basic concepts have proven viable. At the present time it is appropriate to shift the research emphasis in laser initiation from the scientific arena--whether it can be done--to the engineering realm--how it can be put into actual practice in the field. Laser initiation research and development at EG&G Mound was in three principal areas: (1) laser/energetic material interactions; (2) development of novel processing techniques for fabricating hermetic (helium leak rate of less than 1 x 10(exp -8) cu cm/s) laser components; and (3) evaluation and testing of laser-ignited components. Research in these three areas has resulted in the development of high quality, hermetic, laser initiated components. Examples are presented which demonstrate the practicality of fabricating hermetic, laser initiated explosive or pyrotechnic components that can be used in the next generation of ignitors, actuators, and detonators
Variation in thromboembolic complications among patients undergoing commonly performed cancer operations
ObjectiveThere is widespread evidence that cancer confers an increased risk of deep venous thrombosis (DVT). This risk is thought to vary among different cancer types. The purpose of this study is to better define the incidence of thrombotic complications among patients undergoing surgical treatment for a spectrum of prevalent cancer diagnoses in contemporary practice.MethodsAll patients undergoing one of 11 cancer surgical operations (breast resection, hysterectomy, prostatectomy, colectomy, gastrectomy, lung resection, hepatectomy, pancreatectomy, cystectomy, esophagectomy, and nephrectomy) were identified by Current Procedural Terminology and International Classification of Diseases, Ninth Revision codes using the American College of Surgeons National Surgical Quality Improvement Program database (2007-2009). The study endpoints were DVT, pulmonary embolism (PE), and overall postoperative venous thromboembolic events (VTE) within 1 month of the index procedure. Multivariate logistic regression was utilized to calculate adjusted odds ratios for each endpoint.ResultsOver the study interval, 43,808 of the selected cancer operations were performed. The incidence of DVT, PE, and total VTE within 1 month following surgery varied widely across a spectrum of cancer diagnoses, ranging from 0.19%, 0.12%, and 0.28% for breast resection to 6.1%, 2.4%, and 7.3%, respectively, for esophagectomy. Compared with breast cancer, the incidence of VTE ranged from a 1.31-fold increase in VTE associated with gastrectomy (95% confidence interval, 0.73-2.37; P = .4) to a 2.68-fold increase associated with hysterectomy (95% confidence interval, 1.43-5.01; P = .002). Multivariate logistic regression revealed that inpatient status, steroid use, advanced age (â„60 years), morbid obesity (body mass index â„35), blood transfusion, reintubation, cardiac arrest, postoperative infectious complications, and prolonged hospitalization were independently associated with increased risk of VTE.ConclusionsThe incidence of VTE and thromboembolic complications associated with cancer surgery varies substantially. These findings suggest that both tumor type and resection magnitude may impact VTE risk. Accordingly, such data support diagnosis and procedural-specific guidelines for perioperative VTE prophylaxis and can be used to anticipate the risk of potentially preventable morbidity
Big Data: Managing the Future\u27s Agriculture and Natural Resource Systems
Big Data: Managing the Future\u27s Agriculture and Natural Resource Systems
Big data is the incredible flow of information that surrounds each of us, every day. Big data tools identify patterns and habits, not only in research, but in manufacturing, logisticsâeven ordering items online
BioSimulators: a central registry of simulation engines and services for recommending specific tools
Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations
Simultaneous observations of PKS 2155-304 with H.E.S.S., Fermi, RXTE and ATOM: spectral energy distributions and variability in a low state
We report on the first simultaneous observations that cover the optical,
X-ray, and high energy gamma-ray bands of the BL Lac object PKS 2155-304. The
gamma-ray bands were observed for 11 days, between 25 August and 6 September
2008, jointly with the Fermi Gamma-ray Space Telescope and the H.E.S.S.
atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral
energy distribution with the new generation of gamma-ray telescopes. The ATOM
telescope and the RXTE and Swift observatories provided optical and X-ray
coverage of the low-energy component over the same time period. The object was
close to the lowest archival X-ray and Very High Energy state, whereas the
optical flux was much higher. The light curves show relatively little (~30%$)
variability overall when compared to past flaring episodes, but we find a clear
optical/VHE correlation and evidence for a correlation of the X-rays with the
high energy spectral index. Contrary to previous observations in the flaring
state, we do not find any correlation between the X-ray and VHE components.
Although synchrotron self-Compton models are often invoked to explain the SEDs
of BL Lac objects, the most common versions of these models are at odds with
the correlated variability we find in the various bands for PKS 2155-304.Comment: Accepted for publication in the Astrophysical Journa
Very high energy gamma-ray observations of the galaxy clusters Abell 496 and Abell 85 with HESS
Aims. The nearby galaxy clusters Abell 496 and Abell 85 are studied in the very high-energy (VHE, E > 100 GeV) band to investigate VHE cosmic rays (CRs) in this class of objects which are the largest gravitationally bound systems in the Universe. Methods. HESS, an array of four imaging atmospheric cherenkov telescopes (IACT), was used to observe the targets in the range of VHE gamma rays. Results. No significant gamma-ray signal is found at the respective position of the two clusters with several different source size assumptions for each target. In particular, emission regions corresponding to the high-density core, to the extension of the entire X-ray emission in these clusters, and to the very extended region where the accretion shock is expected are investigated. Upper limits are derived for the gamma-ray flux at energies E > 570 GeV for Abell 496 and E > 460 GeV for Abell 85. Conclusions. From the non-detection in VHE gamma rays, upper limits on the total energy of hadronic CRs in the clusters are calculated. If the cosmic-ray energy density follows the large-scale gas density profile, the limit on the fraction of energy in these non-thermal particles with respect to the total thermal energy of the intra-cluster medium (ICM) is 51% for Abell 496 and only 8% for Abell 85 due to its higher mass and higher gas density. These upper limits are compared with theoretical estimates. They predict about ~10% of the thermal energy of the ICM in non-thermal particles. The observations presented here can constrain these predictions especially for the case of the Abell 85 cluster.F. Aharonian...G. Rowell...A. Zech, et a
Universal DNA methylation age across mammalian tissues
DATA AVAILABILITY STATEMENT : The individual-level data from the Mammalian Methylation Consortium can be accessed from several online locations. All data from the Mammalian Methylation Consortium are posted on Gene Expression Omnibus (complete dataset, GSE223748). Subsets of the datasets can also be downloaded from accession numbers GSE174758, GSE184211, GSE184213, GSE184215, GSE184216, GSE184218, GSE184220, GSE184221, GSE184224, GSE190660, GSE190661, GSE190662, GSE190663, GSE190664, GSE174544, GSE190665, GSE174767, GSE184222, GSE184223, GSE174777, GSE174778, GSE173330, GSE164127, GSE147002, GSE147003, GSE147004, GSE223943 and GSE223944. Additional details can be found in Supplementary Note 2. The mammalian data can also be downloaded from the Clock Foundation webpage: https://clockfoundation.org/MammalianMethylationConsortium. The mammalian methylation array is available through the non-profit Epigenetic Clock Development Foundation (https://clockfoundation.org/). The manifest file of the mammalian array and genome annotations of CpG sites can be found on Zenodo (10.5281/zenodo.7574747). All other data supporting the findings of this study are available from the corresponding author upon reasonable request.
The chip manifest files, genome annotations of CpG sites and the software code for universal pan-mammalian clocks can be found on GitHub95 at https://github.com/shorvath/MammalianMethylationConsortium/tree/v2.0.0. The individual R code for the universal pan-mammalian clocks, EWAS analysis and functional enrichment studies can be also found in the Supplementary Code.SUPPLEMENTARY MATERIAL 1 : Supplementary Tables 1â3 and Notes 1â6.SUPPLEMENTARY MATERIAL 2 : Reporting SummarySUPPLEMENTARY MATERIAL 3 : Supplementary Data 1â14.SUPPLEMENTARY MATERIAL 4 : Supplementary Code.Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.https://www.nature.com/nataginghj2024Zoology and EntomologySDG-15:Life on lan
New (Nor)Aza-Adamantanes Are Agonists at the Newly Identified Serotonin 5HT4 Receptor and Antagonists at the 5HT3 Receptor
New aza(nor)adamantanes 1A, 1B, and 1C are described which exhibit properties of both 5-HT4 agonism and 5-HT3 antagonism. In particular, compound 1C [SC-52491], an azanoradamantane, exhibits an EC50 of 51 nM in a functional model of 5-HT4 agonism and potent antagonism, Ki = 1.2 nM, at the 5-HT3receptor
Stereoselective UV Sensing of 1,2-Diaminocyclohexane Isomers Based on Ligand Displacement with a Diacridylnaphthalene <i>N,NâČ</i>-Dioxide Scandium Complex
Stereoselective displacement of diacridylnaphthalene <i>N,NâČ</i>-dioxide ligands, <b>1</b>, from a scandiumÂ(III)
complex can
be used for quantitative detection of 1,2-diaminocyclohexane isomers.
The diastereoselective sensing assay with ScÂ(<i>syn</i>-<b>1</b>)<sub>2</sub> shows excellent linearity between the sample
de and the measured UV absorption change, and sensing of mixtures
comprising both low and high de values gave results within 5% accuracy.
All three stereoisomers of 1,2-diaminocyclohexane can be differentiated
using ScÂ[<i>anti</i>-(â)-<b>1</b>]<sub>2</sub> in the same ligand displacement assay
- âŠ