26 research outputs found
Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators
7 pags., 11 figs., 1 tab.Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and ¿ -ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.This work has been supported by the PRONTO-CM
B2017/BMD-3888 project funded by Comunidad de Madrid
(Spain). The research leading to these results has received
funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement no. 654002
(ENSAR2) and grant agreement No [730983] (INSPIRE).
This work has been partly supported by the Spanish Funding
Agency for Research (AEI) through the PID2019-104390GBI00 and PID2019-104714GB-C21 projects. A.N. Nerio acknowledges the fundings from the Erasmus Mundus Joint
Master Degree on Nuclear Physics co-funded by the Erasmus+Programme of the European Union
Proton radiographs using position-sensitive silicon detectors and high-resolution scintillators
Proton therapy is a cancer treatment technique currently in growth worldwide.
It offers advantages with respect to conventional X-ray and -ray
radiotherapy, in particular, a better control of the dose deposition allowing
to reach a higher conformity in the treatments. Therefore, it causes less
damage to the surrounding healthy tissue and less secondary effects. However,
in order to take full advantage of its potential, improvements in treatment
planning and dose verification are required. A new prototype of proton Computed
Tomography scanner is proposed to design more accurate and precise treatment
plans for proton therapy. Here, results obtained from an experiment performed
using a 100-MeV proton beam at the CCB facility in Krakow (Poland) are
presented. Proton radiographs of PMMA samples of 50-mm thickness with spatial
patterns in aluminum were taken. Their properties were studied, including
reproduction of the dimensions, spatial resolution and sensitivity to different
materials. They demonstrate the capabilities of the system to produce images
with protons. Structures of up to 2 mm are nicely resolved and the sensitivity
of the system was enough to distinguish thicknesses of 10 mm of aluminum or
PMMA. This constitutes a first step to validate the device as a proton
radiography scanner previous to the future tests as a proton CT scanner.Comment: 7 pages, 11 figures, submitted to IEEE TNS ANIMMA 2021 Conference
Proceeding
The PARIS cluster coupled to the BaFPro electronic module: data analysis from the NRF experiment at the ELBE facility
International audience; The first cluster of the constructed PARIS calorimeter was assembled and tested atthe ELBE facility at HZDR, Dresden, Germany. The experiment was aimed at the evaluationof the performance of each detector separately as well as the whole PARIS cluster with discrete-ray energies seen by the PARIS ranging up to 8.9 MeV. As the detectors use phoswichconfiguration, with 2'' x 2'' x 2'' LaBr3(Ce) crystal coupled to 2'' x 2'' x 6'' NaI(Tl) one, greatcare must be taken during the data analysis process to obtain the best possible values for energyresolution. Two algorithms for data transformation from matrices created with slow vs fastpulse shaping to energy spectra were tested from which one was chosen for further analysis. Analgorithm for adding back energies of -rays scattered inside the cluster was prepared, as well.Energy resolution for -rays in 2–8 MeV range was estimated and is presented in this paper
Silicon detector for a Compton Camera in Nuclear Medical Imaging
Electronically collimated gamma ca\-me\-ras based on Com\-pton scattering in silicon pad sensors may improve imaging in nuclear medicine and bio-medical research. The work described here concentrates on the silicon pad detector developed for a prototype Compton camera. The silicon pad sensors are read out using low noise VLSI CMOS chips and novel fast triggering chips. Depending on the application a light weight and dense packaging of sensors and its readout electronics on a hybrid is required. We describe the silicon pad sensor and their readout with the newly designed hybrid. %The silicon detector of a Compton camera %may contain up to ~analogue channels requiring %a fast and low cost data acquisition system. We also describe a modular and low-cost data acquisition system (CCDAQ) based on a digital signal processor which is interfaced to the EPP port of personal computers. Using the CCDAQ and the hybrids energy spectra of gamma-ray photons from technetium (Tc) and americium (Am) were acquired with an energy resolution of 2.45~keV FWHM for the 140.5~keV photo-absorption line of Tc. For all pads the discrimination threshold in the trigger chip was between (15 and 25)~keV
Studies of efficiency of the Kratta detectors in the deuteron breakup experiment.
International audienceAn experiment focused on studies of relativistic effects in the proton-deuteron breakup reaction has been performed at Cyclotron Center Bronowice in Kraków, Poland with the use of the Kratta detectors. Thirty Kratta modules have been arranged in a planar symmetric around beam axis configuration at few selected polar angles at which significant relativistic effects have been predicted. In front of each Kratta module 4 thin plastic scintillators were installed acting as a fast timing detectors to improve a trigger system. Determination of acceptance and efficiency of the detectors is discussed
M4 RESONANCES IN LIGHT NUCLEI STUDIED AT CCB
M4 resonances in light nuclei result from the p3/2 → d5/2 stretched excitations. Their configurations should be relatively simple, which makes them good benchmarks for the theoretical calculations taking into account the role of continuum couplings. The first experimental studies aiming at tracing the decay of the M4 stretched resonance in 13C, located at 21.47 MeV, were undertaken at the Cyclotron Centre Bronowice at the Institute of Nuclear Physics Polish Academy of Sciences in Kraków, Poland (IFJ PAN). They provided information on the proton and neutron decay channels of this resonance to 12B and 12C daughter nuclei, respectively. These experimental results were then compared with the theoretical calculations based on the Gamow Shell Model approach, in terms of energy, width, and in particular, the decay pattern. Furthermore, the studies of the next cases, namely, 14N and 16O, where several M4 resonances appear at around 20 MeV, have been recently performed at CCB. The new experimental findings will serve as a testing ground for future calculations describing the heavier nuclei in this important region of the nuclear chart.</p
Measurement of the Decay from the Energy Region of the Pygmy Dipole States Excited in the Pb Reaction at CCB
International audienceFor a few years, the medical cyclotron Proteus C-235 at the Cyclotron Centre Bronowice in Kraków, Poland has been regularly used for nuclear structure experiments. One of the ongoing studies is focused on the γ decay of collective states populated in (p, p0γ) reactions. In a recent experiment, γ decays of excited states in the energy region of the Pygmy Dipole States in 208Pb have been observed. Good efficiency and energy resolution provided by the PARIS clusters and LaBr3:Ce scintillators facilitate a comparison of the obtained energy spectra with previous measurements of pygmy states in this nucleus
M4 Resonances in Light Nuclei Studied at CCB
International audienceM4 resonances in light nuclei result from the p3/2 → d5/2 stretched excitations. Their configurations should be relatively simple, which makes them good benchmarks for the theoretical calculations taking into account the role of continuum couplings. The first experimental studies aiming at tracing the decay of the M4 stretched resonance in 13C, located at 21.47 MeV, were undertaken at the Cyclotron Centre Bronowice at the Institute of Nuclear Physics Polish Academy of Sciences in Kraków, Poland (IFJ PAN). They provided information on the proton and neutron decay channels of this resonance to 12B and 12C daughter nuclei, respectively. These experimental results were then compared with the theoretical calculations based on the Gamow Shell Model approach, in terms of energy, width, and in particular, the decay pattern. Furthermore, the studies of the next cases, namely, 14N and 16O, where several M4 resonances appear at around 20 MeV, have been recently performed at CCB. The new experimental findings will serve as a testing ground for future calculations describing the heavier nuclei in this important region of the nuclear chart
Decay of the “Stretched” M4 Resonance in C
International audience“Stretched” states are examples of the simplest nuclear excitations in the continuum, thus offering an excellent testing ground for various theoretical approaches. The decay of the stretched single-particle state in 13C, located at 21.47 MeV, was investigated in an experiment performed recently at the Cyclotron Centre Bronowice (CCB) at IFJ PAN in Kraków. First experimental information on the proton and neutron decay channels of this resonance was obtained by employing coincidence measurement of protons inelastically scattered on the 13C target and γ rays from daughter nuclei. The new experimental findings will be used for testing predictions obtained by the Gamow Shell Model calculations