70 research outputs found

    In Vitro Cultures of Schisandra chinensis (Turcz.) Baill. (Chinese Magnolia Vine)—a Potential Biotechnological Rich Source of Therapeutically Important Phenolic Acids

    Get PDF
    The contents of free phenolic acids and cinnamic acid were determined using an HPLC method in methanolic extracts from biomass of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) at different stages of organogenesis, cultured in vitro on a few variants of Murashige and Skoog (MS) medium, containing different concentrations of plant growth regulators 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) (from 0.1 to 3.0 mg/l) and in extracts from overground parts of plants growing in vivo. Six of 12 analysed compounds were detected in all extracts: chlorogenic, p-coumaric, p-hydroxybenzoic, protocatechuic, salicylic and syringic acids. Total contents of the examined metabolites in biomass of shoot-differentiating callus culture cultivated on six MS medium variants were dependent on concentrations of growth regulators in the media and ranged from 14.90 to 60.05 mg/100 g d.w. Total contents of the compounds in biomass extracts from undifferentiating callus culture maintained only on two of six MS medium variants were higher and amounted to 74.54 and 78.24 mg/100 g d.w. Maximum total contents of phenolic acids in both types of in vitro cultures were greater than in fruits (55.73 mg/100 g d.w.) and leaves (4.55 mg/100 g d.w.) of plants gowning in vivo. Chlorogenic acid and salicylic acid were the main compounds identified in biomass extracts of shoot-differentiating callus cultures (max 22.60 and 21.17 mg/100 g d.w., respectively), while chlorogenic acid (max 38.43 mg/100 g d.w.) and protocatechuic acid (max 20.95 mg/100 g d.w.) prevailed in the extracts from undifferentiating callus cultures. Other compounds dominated in fruits, namely p-coumaric acid (23.36 mg/100 g d.w.) and syringic acid (14.96 mg/100 g d.w.). This is the first report on biochemical potential of cells from S. chinensis in vitro cultures to produce the biologically active phenolic acids. These are the first results on the analysis of this group of metabolites in overground parts of plants growing in vivo, too

    Mutations causing medullary cystic kidney disease type 1 (MCKD1) lie in a large VNTR in MUC1 missed by massively parallel sequencing

    Get PDF
    While genetic lesions responsible for some Mendelian disorders can be rapidly discovered through massively parallel sequencing (MPS) of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple Mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing, and de novo assembly, we found that each of six MCKD1 families harbors an equivalent, but apparently independently arising, mutation in sequence dramatically underrepresented in MPS data: the insertion of a single C in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5-5 kb), GC-rich (>80%), coding VNTR in the mucin 1 gene. The results provide a cautionary tale about the challenges in identifying genes responsible for Mendelian, let alone more complex, disorders through MPS

    Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing

    Get PDF
    Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5–5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.National Institutes of Health (U.S.) (Intramural Research Program)National Human Genome Research Institute (U.S.)Charles University (program UNCE 204011)Charles University (program PRVOUK-P24/LF1/3)Czech Republic. Ministry of Education, Youth, and Sports (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant LH12015)National Institutes of Health (U.S.) (Harvard Digestive Diseases Center, grant DK34854

    Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia

    Get PDF
    Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1—c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)—both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD

    An international cohort study of autosomal dominant tubulointerstitial kidney disease due to REN mutations identifies distinct clinical subtypes

    Get PDF
    There have been few clinical or scientific reports of autosomal dominant tubulointerstitial kidney disease due to REN mutations (ADTKD-REN), limiting characterization. To further study this, we formed an international cohort characterizing 111 individuals from 30 families with both clinical and laboratory findings. Sixty-nine individuals had a REN mutation in the signal peptide region (signal group), 27 in the prosegment (prosegment group), and 15 in the mature renin peptide (mature group). Signal group patients were most severely affected, presenting at a mean age of 19.7 years, with the prosegment group presenting at 22.4 years, and the mature group at 37 years. Anemia was present in childhood in 91% in the signal group, 69% prosegment, and none of the mature group. REN signal peptide mutations reduced hydrophobicity of the signal peptide, which is necessary for recognition and translocation across the endoplasmic reticulum, leading to aberrant delivery of preprorenin into the cytoplasm. REN mutations in the prosegment led to deposition of prorenin and renin in the endoplasmic reticulum Golgi intermediate compartment and decreased prorenin secretion. Mutations in mature renin led to deposition of the mutant prorenin in the endoplasmic reticulum, similar to patients with ADTKD-UMOD, with a rate of progression to end stage kidney disease (63.6 years) that was significantly slower vs. the signal (53.1 years) and prosegment groups (50.8 years) (significant hazard ratio 0.367). Thus, clinical and laboratory studies revealed subtypes of ADTKD-REN that are pathophysiologically, diagnostically, and clinically distinct

    Neither poor nor cool : Practising food self-provisioning in allotment gardens in the Netherlands and Czechia

    No full text
    While urban gardening and food provisioning have become well-established subjects of academic inquiry, these practices are given different meanings depending on where they are performed. In this paper, we scrutinise different framings used in the literature on food self-provisioning in Eastern and Western Europe. In the Western context, food self-provisioning is often mentioned alongside other alternative food networks and implicitly framed as an activist practice. In comparison, food self-provisioning in Central and Eastern Europe has until recently been portrayed as a coping strategy motivated by economic needs and underdeveloped markets. Our research used two case studies of allotment gardening from bothWestern and Eastern Europe to investigate the legitimacy of the diverse framings these practices have received in the literature. Drawing on social practice theory, we examined the meanings of food self-provisioning for allotment gardeners in Czechia and the Netherlands, as well as the material manifestations of this practice. We conclude that, despite minor differences, allotment gardeners in both countries are essentially 'doing the same thing.' We thus argue that assuming differences based on different contexts is too simplistic, as are the binary categories of 'activist alternative' versus 'economic need.'</p

    Quantitative analysis of volatile metabolites released in vitro by bacteria of the genus Stenotrophomonas for identification of breath biomarkers of respiratory infection in cystic fibrosis

    Get PDF
    The aim of the present study was to characterize the volatile metabolites produced by genotypically diverse strains of the Stenotrophomonas genus in order to evaluate their potential as biomarkers of lung infection by non-invasive breath analysis. Volatile organic compounds (VOCs) emitted from 15 clinical and five environmental strains belonging to different genogroups of Stenotrophomonas maltophilia (n = 18) and Stenotrophomonas rhizophila (n = 2) cultured in Mueller-Hinton Broth (MHB) liquid media were analysed by gas chromatography mass spectrometry (GC-MS) and selected ion flow tube mass spectrometry (SIFT-MS). Several VOCs were detected in high concentration, including ammonia, propanol, dimethyl disulphide propanol and dimethyl disulphide. The GC-MS measurements showed that all 15 clinical strains produced similar headspace VOCs compositions, and SIFT-MS quantification showed that the rates of production of the VOCs by the genotypically distinct strains were very similar. All in vitro cultures of both the Stenotrophomonas species were characterised by efficient production of two isomers of methyl butanol, which can be described by known biochemical pathways and which is absent in other pathogens, including Pseudomonas aeruginosa. These in-vitro data indicate that methyl butanol isomers may be exhaled breath biomarkers of S. maltophilia lung infection in patients with cystic fibrosis
    corecore