316 research outputs found

    Apotransferrin-induced recovery after hypoxic/ischaemic injury on myelination

    Get PDF
    We have previously demonstrated that aTf (apotransferrin) accelerates maturation of OLs (oligodendrocytes) in vitro as well as in vivo. The purpose of this study is to determine whether aTf plays a functional role in a model of H/I (hypoxia/ischaemia) in the neonatal brain. Twenty-four hours after H/I insult, neonatal rats were intracranially injected with aTf and the effects of this treatment were evaluated in the CC (corpus callosum) as well as the SVZ (subventricular zone) at different time points. Similar to previous studies, the H/I event produced severe demyelination in the CC. Demyelination was accompanied by microglial activation, astrogliosis and iron deposition. Ferritin levels increased together with lipid peroxidation and apoptotic cell death. Histological examination after the H/I event in brain tissue of aTf-treated animals (H/I aTF) revealed a great number of mature OLs repopulating the CC compared with saline-treated animals (H/I S). ApoTf treatment induced a gradual increase in MBP (myelin basic protein) and myelin lipid staining in the CC reaching normal levels after 15 days. Furthermore, significant increase in the number of OPCs (oligodendroglial progenitor cells) was found in the SVZ of aTf-treated brains compared with H/I S. Specifically, there was a rise in cells positive for OPC markers, i.e. PDGFRα and SHH+ cells, with a decrease in cleaved-caspase-3+ cells compared with H/I S. Additionally, neurospheres from aTf-treated rats were bigger in size and produced more O4/MBP+ cells. Our findings indicate a role for aTf as a potential inducer of OLs in neonatal rat brain in acute demyelination caused by H/I and a contribution to the differentiation/maturation of OLs and survival/migration of SVZ progenitors after demyelination in vivo

    MTN-001: Randomized Pharmacokinetic Cross-Over Study Comparing Tenofovir Vaginal Gel and Oral Tablets in Vaginal Tissue and Other Compartments

    Get PDF
    Background: Oral and vaginal preparations of tenofovir as pre-exposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection have demonstrated variable efficacy in men and women prompting assessment of variation in drug concentration as an explanation. Knowledge of tenofovir concentration and its active form, tenofovir diphosphate, at the putative vaginal and rectal site of action and its relationship to concentrations at multiple other anatomic locations may provide key information for both interpreting PrEP study outcomes and planning future PrEP drug development. Objective: MTN-001 was designed to directly compare oral to vaginal steady-state tenofovir pharmacokinetics in blood, vaginal tissue, and vaginal and rectal fluid in a paired cross-over design. Methods and Findings: We enrolled 144 HIV-uninfected women at 4 US and 3 African clinical research sites in an open label, 3-period crossover study of three different daily tenofovir regimens, each for 6 weeks (oral 300 mg tenofovir disoproxil fumarate, vaginal 1% tenofovir gel [40 mg], or both). Serum concentrations after vaginal dosing were 56-fold lower than after oral dosing (p<0.001). Vaginal tissue tenofovir diphosphate was quantifiable in ≥90% of women with vaginal dosing and only 19% of women with oral dosing. Vaginal tissue tenofovir diphosphate was ≥130-fold higher with vaginal compared to oral dosing (p<0.001). Rectal fluid tenofovir concentrations in vaginal dosing periods were higher than concentrations measured in the oral only dosing period (p<0.03). Conclusions: Compared to oral dosing, vaginal dosing achieved much lower serum concentrations and much higher vaginal tissue concentrations. Even allowing for 100-fold concentration differences due to poor adherence or less frequent prescribed dosing, vaginal dosing of tenofovir should provide higher active site concentrations and theoretically greater PrEP efficacy than oral dosing; randomized topical dosing PrEP trials to the contrary indicates that factors beyond tenofovir's antiviral effect substantially influence PrEP efficacy. Trial Registration: ClinicalTrials.gov NCT00592124

    Scattering Theory and PT\mathcal{P}\mathcal{T}-Symmetry

    Full text link
    We outline a global approach to scattering theory in one dimension that allows for the description of a large class of scattering systems and their P\mathcal{P}-, T\mathcal{T}-, and PT\mathcal{P}\mathcal{T}-symmetries. In particular, we review various relevant concepts such as Jost solutions, transfer and scattering matrices, reciprocity principle, unidirectional reflection and invisibility, and spectral singularities. We discuss in some detail the mathematical conditions that imply or forbid reciprocal transmission, reciprocal reflection, and the presence of spectral singularities and their time-reversal. We also derive generalized unitarity relations for time-reversal-invariant and PT\mathcal{P}\mathcal{T}-symmetric scattering systems, and explore the consequences of breaking them. The results reported here apply to the scattering systems defined by a real or complex local potential as well as those determined by energy-dependent potentials, nonlocal potentials, and general point interactions.Comment: Slightly expanded revised version, 38 page

    Following a foraging fish-finder : diel habitat use of Blainville's beaked whales revealed by echolocation

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e28353, doi:10.1371/journal.pone.0028353.Simultaneous high resolution sampling of predator behavior and habitat characteristics is often difficult to achieve despite its importance in understanding the foraging decisions and habitat use of predators. Here we tap into the biosonar system of Blainville's beaked whales, Mesoplodon densirostris, using sound and orientation recording tags to uncover prey-finding cues available to echolocating predators in the deep-sea. Echolocation sounds indicate where whales search and encounter prey, as well as the altitude of whales above the sea-floor and the density of organisms around them, providing a link between foraging activity and the bio-physical environment. Tagged whales (n = 9) hunted exclusively at depth, investing most of their search time either in the lower part of the deep scattering layer (DSL) or near the sea-floor with little diel change. At least 43% (420/974) of recorded prey-capture attempts were performed within the benthic boundary layer despite a wide range of dive depths, and many dives included both meso- and bentho-pelagic foraging. Blainville's beaked whales only initiate searching when already deep in the descent and encounter prey suitable for capture within 2 min of the start of echolocation, suggesting that these whales are accessing prey in reliable vertical strata. Moreover, these prey resources are sufficiently dense to feed the animals in what is effectively four hours of hunting per day enabling a strategy in which long dives to exploit numerous deep-prey with low nutritional value require protracted recovery periods (average 1.5 h) between dives. This apparent searching efficiency maybe aided by inhabiting steep undersea slopes with access to both the DSL and the sea-floor over small spatial scales. Aggregations of prey in these biotopes are located using biosonar-derived landmarks and represent stable and abundant resources for Blainville's beaked whales in the otherwise food-limited deep-ocean.The work was funded by the Office of Naval Research and the National Ocean Partnership Program (US), by a consortium consisting of the Canary Islands Government, the Spanish Ministry of Environment and the Spanish Ministry of Defense, and by the European environmental funding LIFE-INDEMARES program for the inventory and designation of the Natura 2000 network in marine areas of the Spanish territory, headed by Fundacion Biodiversidad, with additional support from the Cabildo Insular of El Hierro. PA is currently supported by the National Research Project: Cetacean, Oceanography and Biodiversity from La Palma and El Hierro (CGL2009-13112) of the Spanish Ministry of Science and NAS by a Marie Curie fellowship from the 7th European Frame Program. MJ was supported by grants from the Strategic Environmental Research Development Program and from the National Ocean Partnership Program. PTM was supported by frame grants from the National Danish Science Foundation

    Can computational efficiency alone drive the evolution of modularity in neural networks?

    Get PDF
    Some biologists have abandoned the idea that computational efficiency in processing multipart tasks or input sets alone drives the evolution of modularity in biological networks. A recent study confirmed that small modular (neural) networks are relatively computationally-inefficient but large modular networks are slightly more efficient than non-modular ones. The present study determines whether these efficiency advantages with network size can drive the evolution of modularity in networks whose connective architecture can evolve. The answer is no, but the reason why is interesting. All simulations (run in a wide variety of parameter states) involving gradualistic connective evolution end in non-modular local attractors. Thus while a high performance modular attractor exists, such regions cannot be reached by gradualistic evolution. Non-gradualistic evolutionary simulations in which multi-modularity is obtained through duplication of existing architecture appear viable. Fundamentally, this study indicates that computational efficiency alone does not drive the evolution of modularity, even in large biological networks, but it may still be a viable mechanism when networks evolve by non-gradualistic means

    Association of common ATM variants with familial breast cancer in a South American population

    Get PDF
    Background: The ATM gene has been frequently involved in hereditary breast cancer as a low-penetrance susceptibility gene but evidence regarding the role of ATM as a breast cancer susceptibility gene has been contradictory. Methods: In this study, a full mutation analysis of the ATM gene was carried out in patients from 137 Chilean breast cancer families, of which 126 were BRCA1/2 negatives and 11 BRCA1/2 positives. We further perform a case-control study between the subgroup of 126 cases BRCA1/2 negatives and 200 controls for the 5557G > A missense variant and the IVS38-8T > C and the IVS24-9delT polymorphisms. Results: In the full mutation analysis we detected two missense variants and eight intronic polymorphisms. Carriers of the variant IVS24-9delT, or IVS38-8T > C, or 5557G > A showed an increase in breast cancer risk. The higher significance was observed in the carriers of IVS38-8T > C (OR = 3.09 [95% CI 1.11-8.59], p = 0.024). The IVS24-9 T/(-T), IVS38-8 T/C, 5557 G/A composite genotype confered a 3.19 fold increase in breast cancer risk (OR = 3.19 [ 95% CI 1.16-8.89], p = 0.021). The haplotype estimation suggested a strong linkage disequilibrium between the three markers (D' = 1). We detected only three haplotypes in the cases and control samples, some of these may be founder haplotypes in the Chilean population. Conclusion: The IVS24-9 T/(-T), IVS38-8 T/C, 5557 G/A composite genotype alone or in combination with certain genetic background and/or environmental factors, could modify the cancer risk by increasing genetic inestability or by altering the effect of the normal DNA damage response

    Restructuring of Pancreatic Islets and Insulin Secretion in a Postnatal Critical Window

    Get PDF
    Function and structure of adult pancreatic islets are determined by early postnatal development, which in rats corresponds to the first month of life. We analyzed changes in blood glucose and hormones during this stage and their association with morphological and functional changes of alpha and beta cell populations during this period. At day 20 (d20), insulin and glucose plasma levels were two- and six-fold higher, respectively, as compared to d6. Interestingly, this period is characterized by physiological hyperglycemia and hyperinsulinemia, where peripheral insulin resistance and a high plasmatic concentration of glucagon are also observed. These functional changes were paralleled by reorganization of islet structure, cell mass and aggregate size of alpha and beta cells. Cultured beta cells from d20 secreted the same amount of insulin in 15.6 mM than in 5.6 mM glucose (basal conditions), and were characterized by a high basal insulin secretion. However, beta cells from d28 were already glucose sensitive. Understanding and establishing morphophysiological relationships in the developing endocrine pancreas may explain how events in early life are important in determining adult islet physiology and metabolism

    DNA Structure Modulates the Oligomerization Properties of the AAV Initiator Protein Rep68

    Get PDF
    Rep68 is a multifunctional protein of the adeno-associated virus (AAV), a parvovirus that is mostly known for its promise as a gene therapy vector. In addition to its role as initiator in viral DNA replication, Rep68 is essential for site-specific integration of the AAV genome into human chromosome 19. Rep68 is a member of the superfamily 3 (SF3) helicases, along with the well-studied initiator proteins simian virus 40 large T antigen (SV40-LTag) and bovine papillomavirus (BPV) E1. Structurally, SF3 helicases share two domains, a DNA origin interaction domain (OID) and an AAA+ motor domain. The AAA+ motor domain is also a structural feature of cellular initiators and it functions as a platform for initiator oligomerization. Here, we studied Rep68 oligomerization in vitro in the presence of different DNA substrates using a variety of biophysical techniques and cryo-EM. We found that a dsDNA region of the AAV origin promotes the formation of a complex containing five Rep68 subunits. Interestingly, non-specific ssDNA promotes the formation of a double-ring Rep68, a known structure formed by the LTag and E1 initiator proteins. The Rep68 ring symmetry is 8-fold, thus differing from the hexameric rings formed by the other SF3 helicases. However, similiar to LTag and E1, Rep68 rings are oriented head-to-head, suggesting that DNA unwinding by the complex proceeds bidirectionally. This novel Rep68 quaternary structure requires both the DNA binding and AAA+ domains, indicating cooperativity between these regions during oligomerization in vitro. Our study clearly demonstrates that Rep68 can oligomerize through two distinct oligomerization pathways, which depend on both the DNA structure and cooperativity of Rep68 domains. These findings provide insight into the dynamics and oligomeric adaptability of Rep68 and serve as a step towards understanding the role of this multifunctional protein during AAV DNA replication and site-specific integration

    Synchrotron phase-contrast X-ray imaging reveals fluid dosing dynamics for gene transfer into mouse airways

    Get PDF
    Although airway gene transfer research in mouse models relies on bolus fluid dosing into the nose or trachea, the dynamics and immediate fate of delivered gene transfer agents are poorly understood. In particular, this is because there are no in vivo methods able to accurately visualize the movement of fluid in small airways of intact animals. Using synchrotron phase-contrast X-ray imaging, we show that the fate of surrogate fluid doses delivered into live mouse airways can now be accurately and non-invasively monitored with high spatial and temporal resolution. This new imaging approach can help explain the non-homogenous distributions of gene expression observed in nasal airway gene transfer studies, suggests that substantial dose losses may occur at deliver into mouse trachea via immediate retrograde fluid motion and shows the influence of the speed of bolus delivery on the relative targeting of conducting and deeper lung airways. These findings provide insight into some of the factors that can influence gene expression in vivo, and this method provides a new approach to documenting and analyzing dose delivery in small-animal models.M Donnelley, KKW Siu, RA Jamison and DW Parson
    corecore