141 research outputs found
Epigenetic memory in response to environmental stressors
Exposure to environmental stressors, toxicants, and nutrient deficiencies can affect DNA in several ways. Some exposures cause damage and alter the structure of DNA, but there is increasing evidence that the same or other environmental exposures, including those that occur during fetal development in utero, can cause epigenetic effects that modulate DNA function and gene expression. Some epigenetic changes to DNA that affect gene transcription are at least partially reversible (i.e., they can be enzymatically reversed after cessation of exposure to environmental agents), but some epigenetic modifications seem to persist, even for decades. To explain the effects of early life experiences (such as famine and exposures to other stressors) on the long-term persistence of specific patterns of epigenetic modifications, such as DNA methylation, we propose an analogy with immune memory. We propose that an epigenetic memory can be established and maintained in self-renewing stem cell compartments. We suggest that the observations on early life effects on adult diseases and the persistence of methylation changes in smokers support our hypothesis, for which a mechanistic basis, however, needs to be further clarified. We outline a new model based on methylation changes. Although these changes seem to be mainly adaptive, they are also implicated in the pathogenesis and onset of diseases, depending on individual genotypic background and types of subsequent exposures. Elucidating the relationships between the adaptive and maladaptive consequences of the epigenetic modifications that result from complex environmental exposures is a major challenge for current and future research in epigenetics.-Vineis, P., Chatziioannou, A., Cunliffe, V. T., Flanagan, J. M., Hanson, M., Kirsch-Volders, M., Kyrtopoulos, S. Epigenetic memory in response to environmental stressors
Biological marks of early-life socioeconomic experience is detected in the adult inflammatory transcriptome.
Consistent evidence is accumulating to link lower socioeconomic position (SEP) and poorer health, and the inflammatory system stands out as a potential pathway through which socioeconomic environment is biologically embedded. Using bloodderived genome-wide transcriptional profiles from 268 Italian participants of the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, we evaluated the association between early life, young and later adulthood SEP and the expression of 845 genes involved in human inflammatory responses. These were examined individually and jointly using several inflammatory scores. Our results consistently show that participants whose father had a manual (as compared to nonmanual) occupation exhibit, later in life, a higher inflammatory score, hence indicating an overall increased level of expression for the selected inflammatory-related genes. Adopting a life course approach, these associations remained statistically significant upon adjustment for later-in-life socioeconomic experiences. Sensitivity analyses indicated that our findings were not affected by the way the inflammatory score was calculated, and were replicated in an independent study. Our study provides additional evidence that childhood SEP is associated with a sustainable upregulation of the inflammatory transcriptome, independently of subsequent socioeconomic experiences. Our results support the hypothesis that early social inequalities impacts adult physiology
Immune System and Environmental Xenobiotics - The Effect of Selected Mineral Fibers and Particles on the Immune Response
Medical genetic
Chapter Immune System and Environmental Xenobiotics - The Effect of Selected Mineral Fibers and Particles on the Immune Response
Medical genetic
Association between low-grade inflammation and Breast cancer and B-cell Myeloma and Non-Hodgkin Lymphoma: findings from two prospective cohorts
Chronic inflammation may be involved in cancer development and progression. Using 28 inflammatory-related proteins collected from prospective blood samples from two case-control studies nested in the Italian component of the European Prospective Investigation into Cancer and nutrition (n = 261) and in the Northern Sweden Health and Disease Study (n = 402), we tested the hypothesis that an inflammatory score is associated with breast cancer (BC) and Β-cell Non-Hodgkin Lymphoma (B-cell NHL, including 68 multiple myeloma cases) onset. We modelled the relationship between this inflammatory score and the two cancers studied: (BC and B-cell NHL) using generalised linear models, and assessed, through adjustments the role of behaviours and lifestyle factors. Analyses were performed by cancer types pooling both populations, and stratified by cohorts, and time to diagnosis. Our results suggested a lower inflammatory score in B-cell NHL cases (β = −1.28, p = 0.012), and, to lesser, extent with BC (β = −0.96, p = 0.33) compared to controls, mainly driven by cancer cases diagnosed less than 6 years after enrolment. These associations were not affected by subsequent adjustments for potential intermediate confounders, notably behaviours. Sensitivity analyses indicated that our findings were not affected by the way the inflammatory score was calculated. These observations call for further studies involving larger populations, larger variety of cancer types and repeated measures of larger panel of inflammatory markers
Prediagnostic plasma concentrations of organochlorines and risk of B-cell non-Hodgkin lymphoma in envirogenomarkers: a nested case-control study
Background: Evidence suggests a largely environmental component to non-Hodgkin’s lymphoma (NHL). Persistent organic pollutants (POPs) including polychlorinated biphenyls (PCBs), DDE and HCB have been repeatedly implicated, but the literature is inconsistent and a causal relationship remains to be determined. Methods: The EnviroGenoMarkers study is nested within two prospective cohorts EPIC-Italy and the Northern Sweden Health and Disease Study. Six PCB congeners, DDE and HCB were measured in blood plasma samples provided at recruitment using gas-chromatography mass spectrometry. During 16 years follow-up 270 incident cases of B-cell NHL (including 76 cases of multiple myeloma) were diagnosed. Cases were matched to 270 healthy controls by centre, age, gender and date of blood collection. Cases were categorised into ordered quartiles of exposure for each POP based on the distribution of exposure in the control population. Logistic regression was applied to assess the association with risk, multivariate and stratified analyses were performed to identify confounders or effect modifiers. Results: The exposures displayed a strong degree of correlation, particularly amongst those PCBs with similar degrees of chlorination. There was no significant difference (p 90th percentile) the association was null for all POPs Conclusion: We report no evidence that a higher body burden of PCBs, DDE or HCB increased the risk of subsequent NHL diagnosis. Significantly inverse associations were noted for males with a number of the investigated POPs. We hypothesize these unexpected relationships may relate to the subtype composition of our population, effect modification by BMI or other unmeasured confounding. This study provides no additional support for the previously observed role of PCBs, DDE and HCB as risk factors for NHL
Evolving DNA methylation and gene expression markers of B-cell chronic lymphocytic leukemia are present in pre-diagnostic blood samples more than 10 years prior to diagnosis
Background
B-cell chronic lymphocytic leukemia (CLL) is a common type of adult leukemia. It often follows an indolent course and is preceded by monoclonal B-cell lymphocytosis, an asymptomatic condition, however it is not known what causes subjects with this condition to progress to CLL. Hence the discovery of prediagnostic markers has the potential to improve the identification of subjects likely to develop CLL and may also provide insights into the pathogenesis of the disease of potential clinical relevance.
Results
We employed peripheral blood buffy coats of 347 apparently healthy subjects, of whom 28 were diagnosed with CLL 2.0–15.7 years after enrollment, to derive for the first time genome-wide DNA methylation, as well as gene and miRNA expression, profiles associated with the risk of future disease. After adjustment for white blood cell composition, we identified 722 differentially methylated CpG sites and 15 differentially expressed genes (Bonferroni-corrected p < 0.05) as well as 2 miRNAs (FDR < 0.05) which were associated with the risk of future CLL. The majority of these signals have also been observed in clinical CLL, suggesting the presence in prediagnostic blood of CLL-like cells. Future CLL cases who, at enrollment, had a relatively low B-cell fraction (<10%), and were therefore less likely to have been suffering from undiagnosed CLL or a precursor condition, showed profiles involving smaller numbers of the same differential signals with intensities, after adjusting for B-cell content, generally smaller than those observed in the full set of cases. A similar picture was obtained when the differential profiles of cases with time-to-diagnosis above the overall median period of 7.4 years were compared with those with shorted time-to-disease. Differentially methylated genes of major functional significance include numerous genes that encode for transcription factors, especially members of the homeobox family, while differentially expressed genes include, among others, multiple genes related to WNT signaling as well as the miRNAs miR-150-5p and miR-155-5p.
Conclusions
Our findings demonstrate the presence in prediagnostic blood of future CLL patients, more than 10 years before diagnosis, of CLL-like cells which evolve as preclinical disease progresses, and point to early molecular alterations with a pathogenetic potential
Multiomic Signatures of Traffic-Related Air Pollution in London Reveal Potential Short-Term Perturbations in Gut Microbiome-Related Pathways
This randomized crossover study investigated the metabolic and mRNA alterations associated with exposure to high and low traffic-related air pollution (TRAP) in 50 participants who were either healthy or were diagnosed with chronic pulmonary obstructive disease (COPD) or ischemic heart disease (IHD). For the first time, this study combined transcriptomics and serum metabolomics measured in the same participants over multiple time points (2 h before, and 2 and 24 h after exposure) and over two contrasted exposure regimes to identify potential multiomic modifications linked to TRAP exposure. With a multivariate normal model, we identified 78 metabolic features and 53 mRNA features associated with at least one TRAP exposure. Nitrogen dioxide (NO2) emerged as the dominant pollutant, with 67 unique associated metabolomic features. Pathway analysis and annotation of metabolic features consistently indicated perturbations in the tryptophan metabolism associated with NO2 exposure, particularly in the gut-microbiome-associated indole pathway. Conditional multiomics networks revealed complex and intricate mechanisms associated with TRAP exposure, with some effects persisting 24 h after exposure. Our findings indicate that exposure to TRAP can alter important physiological mechanisms even after a short-term exposure of a 2 h walk. We describe for the first time a potential link between NO2 exposure and perturbation of the microbiome-related pathways
Multiomic Signatures of Traffic-Related Air Pollution in London Reveal Potential Short-Term Perturbations in Gut Microbiome-Related Pathways
This randomized crossover study investigated the metabolic and mRNA alterations associated with exposure to high and low traffic-related air pollution (TRAP) in 50 participants who were either healthy or were diagnosed with chronic pulmonary obstructive disease (COPD) or ischemic heart disease (IHD). For the first time, this study combined transcriptomics and serum metabolomics measured in the same participants over multiple time points (2 h before, and 2 and 24 h after exposure) and over two contrasted exposure regimes to identify potential multiomic modifications linked to TRAP exposure. With a multivariate normal model, we identified 78 metabolic features and 53 mRNA features associated with at least one TRAP exposure. Nitrogen dioxide (NO2) emerged as the dominant pollutant, with 67 unique associated metabolomic features. Pathway analysis and annotation of metabolic features consistently indicated perturbations in the tryptophan metabolism associated with NO2 exposure, particularly in the gut-microbiome-associated indole pathway. Conditional multiomics networks revealed complex and intricate mechanisms associated with TRAP exposure, with some effects persisting 24 h after exposure. Our findings indicate that exposure to TRAP can alter important physiological mechanisms even after a short-term exposure of a 2 h walk. We describe for the first time a potential link between NO2 exposure and perturbation of the microbiome-related pathways
Evolving DNA methylation and gene expression markers of B-cell chronic lymphocytic leukemia are present in pre-diagnostic blood samples more than 10 years prior to diagnosis
- …
