1,453 research outputs found

    Light Curve Models of Supernovae and X-ray spectra of Supernova Remnants

    Full text link
    We compare parameters of well-observed type II SN1999em derived by M.Hamuy and D.Nadyozhin based on Litvinova-Nadyozhin (1985) analytic fits with those found from the simulations with our radiative hydro code Stella. The difference of SN parameters is quite large for the long distance scale. The same code applied to models of SN1993J allows us to estimate systematic errors of extracting foreground extinction toward SN1993J suggested by Clocchiatti et al. (1995). A new implicit two-temperature hydro code code Supremna is introduced which self-consistently takes into account the kinetics of ionization, electron thermal conduction, and radiative losses for predicting X-ray spectra of young supernova remnants such as Tycho and Kepler.Comment: 7 pages, 10 figures, Supernovae as Cosmological Lighthouses, Padua, June 16- 19, 2004, eds. M.Turatto et al., ASP Conference Serie

    Electron-capture supernovae exploding within their progenitor wind

    Full text link
    The most massive stars on the asymptotic giant branch (AGB), so called super-AGB stars, are thought to produce supernovae (SNe) triggered by electron captures in their degenerate O+Ne+Mg cores. Super-AGB stars are expected to have slow winds with high mass-loss rates, so their wind density is high. The explosions of super-AGB stars are therefore presumed to occur in this dense wind. We provide the first synthetic light curves (LCs) for such events by exploding realistic electron-capture supernova (ecSN) progenitors within their super-AGB winds. We find that the early LC, i.e. before the recombination wave reaches the bottom of the H-rich envelope of SN ejecta (the plateau phase), is not affected by the dense wind. However, after the plateau phase, the luminosity remains higher when the super-AGB wind is taken into account. We compare our results to the historical LC of SN 1054, the progenitor of the Crab Nebula, and show that the explosion of an ecSN within an ordinary super-AGB wind can explain the LC features. We conclude that SN 1054 could have been a Type IIn SN without any extra extreme mass loss which was previously suggested to be necessary to account for its early high luminosity. We also show that our LCs match Type IIn SNe with an early plateau phase (`Type IIn-P') and suggest that they are ecSNe within super-AGB winds. Although some ecSNe can be bright in the optical spectral range due to the large progenitor radius, their X-ray luminosity from the interaction does not necessarily get as bright as other Type IIn SNe whose optical luminosities are also powered by the interaction. Thus, we suggest that optically-bright X-ray-faint Type IIn SNe can emerge from ecSNe. Optically-faint Type IIn SNe, such as SN 2008S, can also originate from ecSNe if their H-rich envelope masses are small. Some of them can be observed as `Type IIn-b' SNe due to the small H-rich envelope mass.Comment: 8 pages, 6 figures, accepted by Astronomy & Astrophysics, abstract abridge
    corecore