378 research outputs found
Molecular Marker Technology for Crop Improvement
Since the 1980s, agriculture and plant breeding have changed with the development of molecular marker technology. In recent decades, different types of molecular markers have been used for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc. These have produced effective genotyping, but the results have been costly and time-consuming, due to the small number of markers that could be tested simultaneously. Recent advances in molecular marker technologies such as the development of high-throughput genotyping platforms, genotyping by sequencing, and the release of the genome sequences of major crop plants open new possibilities for advancing crop improvement. This Special Issue collects sixteen research studies, including the application of molecular markers in eleven crop species, from the generation of linkage maps and diversity studies to the application of marker-assisted selection and genomic prediction.info:eu-repo/semantics/publishedVersio
A consensus map for quality traits in durum wheat based on genome-wide association studies and detection of ortho-meta QTL across cereal species
The present work focused on the identification of durum wheat QTL hotspots from a collection of genome-wide association studies, for quality traits, such as grain protein content and composition, yellow color, fiber, grain microelement content (iron, magnesium, potassium, selenium, sulfur, calcium, cadmium), kernel vitreousness, semolina, and dough quality test. For the first time a total of 10 GWAS studies, comprising 395 marker-trait associations (MTA) on 57 quality traits, with more than 1,500 genotypes from 9 association panels, were used to investigate consensus QTL hotspots representative of a wide durum wheat genetic variation. MTA were found distributed on all the A and B genomes chromosomes with minimum number of MTA observed on chromosome 5B (15) and a maximum of 45 on chromosome 7A, with an average of 28 MTA per chromosome. The MTA were equally distributed on A (48%) and B (52%) genomes and allowed the identification of 94 QTL hotspots. Synteny maps for QTL were also performed in Zea mays, Brachypodium, and Oryza sativa, and candidate gene identification allowed the association of genes involved in biological processes playing a major role in the control of quality traits.info:eu-repo/semantics/publishedVersio
Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis
Root system architecture is crucial for wheat adaptation to drought stress, but phenotyping for root traits in breeding programmes is difficult and time-consuming owing to the belowground characteristics of the system. Identifying quantitative trait loci (QTLs) and linked molecular markers and using marker-assisted selection is an efficient way to increase selection efficiency and boost genetic gains in breeding programmes. Hundreds of QTLs have been identified for different root traits in the last few years. In the current study, consensus QTL regions were identified through QTL meta-analysis. First, a consensus map comprising 7352 markers was constructed. For the meta-analysis, 754 QTLs were retrieved from the literature and 634 of them were projected onto the consensus map. Meta-analysis grouped 557 QTLs in 94 consensus QTL regions, or meta-QTLs (MQTLs), and 18 QTLs remained as singletons. The recently published genome sequence of wheat was used to search for gene models within the MQTL peaks. As a result, gene models for 68 of the 94 Root_MQTLs were found, 35 of them related to root architecture and/or drought stress response. This work will facilitate QTL cloning and pyramiding to develop new cultivars with specific root architecture for coping with environmental constraints.info:eu-repo/semantics/publishedVersio
Wheat: A Crop in the Bottom of the Mediterranean Diet Pyramid
Wheat currently provides 18% of the daily intake of calories and 20% of proteins for humans. Since its domestication in the Fertile Crescent, wheat has been the basic staple food of the major civilizations of Europe, West Asia and North Africa. The wheat-growing area within the Mediterranean Basin represents 27% of the arable land, and the region represents 60% of the world’s growing area for durum wheat, the species used for pasta manufacturing. Many changes have occurred from the low-productive plants cultivated in prehistoric times to the modern varieties that are now grown, which offer high productivity and quality standards. During the migration process of ancient forms of wheat from the east to the west of the Mediterranean Basin, both natural and human selections occurred, resulting in the development of local landraces characterized by their huge genetic diversity and their documented resilience to abiotic stresses. Wheat breeding activities conducted in the Mediterranean Basin during the twentieth century resulted in large genetic gains in yield and quality. New wheat varieties to be grown in the Mediterranean Basin will need to be resilient to climate change because more frequent episodes of higher temperatures and water scarcity are to be expected
Genetic Dissection of the Seminal Root System Architecture in Mediterranean Durum Wheat Landraces by Genome-Wide Association Study
Roots are crucial for adaptation to drought stress. However, phenotyping root systems
is a difficult and time-consuming task due to the special feature of the traits in the process of being
analyzed. Correlations between root system architecture (RSA) at the early stages of development
and in adult plants have been reported. In this study, the seminal RSA was analysed on a collection of
160 durum wheat landraces from 21 Mediterranean countries and 18 modern cultivars. The landraces
showed large variability in RSA, and differences in root traits were found between previously
identified genetic subpopulations. Landraces from the eastern Mediterranean region, which is the
driest and warmest within the Mediterranean Basin, showed the largest seminal root size in terms of
root length, surface, and volume and the widest root angle, whereas landraces from eastern Balkan
countries showed the lowest values. Correlations were found between RSA and yield-related traits
in a very dry environment. The identification of molecular markers linked to the traits of interest
detected 233 marker-trait associations for 10 RSA traits and grouped them in 82 genome regions
named marker-train association quantitative trait loci (MTA-QTLs). Our results support the use of
ancient local germplasm to widen the genetic background for root traits in breeding programs.info:eu-repo/semantics/publishedVersio
Exploring the Genetic Architecture of Root-Related Traits in Mediterranean Bread Wheat Landraces by Genome-Wide Association Analysis
Background: Roots are essential for drought adaptation because of their involvement in water and nutrient uptake. As the study of the root system architecture (RSA) is costly and time-consuming, it is not generally considered in breeding programs. Thus, the identification of molecular markers linked to RSA traits is of special interest to the breeding community. The reported correlation between the RSA of seedlings and adult plants simplifies its assessment. Methods: In this study, a panel of 170 bread wheat landraces from 24 Mediterranean countries was used to identify molecular markers associated with the seminal RSA and related traits: seminal root angle, total root number, root dry weight, seed weight and shoot length, and grain yield (GY). Results: A genome-wide association study identified 135 marker-trait associations explaining 6% to 15% of the phenotypic variances for root related traits and 112 for GY. Fifteen QTL hotspots were identified as the most important for controlling root trait variation and were shown to include 31 candidate genes related to RSA traits, seed size, root development, and abiotic stress tolerance (mainly drought). Co-location for root related traits and GY was found in 17 genome regions. In addition, only four out of the fifteen QTL hotspots were reported previously. Conclusions: The variability found in the Mediterranean wheat landraces is a valuable source of root traits to introgress into adapted phenotypes through marker-assisted breeding. The study reveals new loci affecting root development in wheat.info:eu-repo/semantics/publishedVersio
From Genetic Maps to QTL Cloning: An Overview for Durum Wheat
Durum wheat is one of the most important cultivated cereal crops, providing nutrients to humans and domestic animals. Durum breeding programs prioritize the improvement of its main agronomic traits; however, the majority of these traits involve complex characteristics with a quantitative inheritance (quantitative trait loci, QTL). This can be solved with the use of genetic maps, new molecular markers, phenotyping data of segregating populations, and increased accessibility to sequences from next-generation sequencing (NGS) technologies. This allows for high-density genetic maps to be developed for localizing candidate loci within a few Kb in a complex genome, such as durum wheat. Here, we review the identified QTL, fine mapping, and cloning of QTL or candidate genes involved in the main traits regarding the quality and biotic and abiotic stresses of durum wheat. The current knowledge on the used molecular markers, sequence data, and how they changed the development of genetic maps and the characterization of QTL is summarized. A deeper understanding of the trait architecture useful in accelerating durum wheat breeding programs is envisioned.info:eu-repo/semantics/publishedVersio
Meta-QTL analysis and identification of candidate genes for quality, abiotic and biotic stress in durum wheat
The genetic improvement of durum wheat and enhancement of plant performance often depend on the identification of stable quantitative trait loci (QTL) and closely linked molecular markers. This is essential for better understanding the genetic basis of important agronomic traits and identifying an effective method for improving selection efficiency in breeding programmes. Meta-QTL analysis is a useful approach for dissecting the genetic basis of complex traits, providing broader allelic coverage and higher mapping resolution for the identification of putative molecular markers to be used in marker-assisted selection. In the present study, extensive QTL meta-analysis was conducted on 45 traits of durum wheat, including quality and biotic and abiotic stress-related traits. A total of 368 QTL distributed on all 14 chromosomes of genomes A and B were projected: 171 corresponded to quality-related traits, 127 to abiotic stress and 71 to biotic stress, of which 318 were grouped in 85 meta-QTL (MQTL), 24 remained as single QTL and 26 were not assigned to any MQTL. The number of MQTL per chromosome ranged from 4 in chromosomes 1A and 6A to 9 in chromosome 7B; chromosomes 3A and 7A showed the highest number of individual QTL (4), and chromosome 7B the highest number of undefined QTL (4). The recently published genome sequence of durum wheat was used to search for candidate genes within the MQTL peaks. This work will facilitate cloning and pyramiding of QTL to develop new cultivars with specific quantitative traits and speed up breeding programs.info:eu-repo/semantics/publishedVersio
Agronomic, Physiological and Genetic Changes Associated With Evolution, Migration and Modern Breeding in Durum Wheat
A panel of 172 Mediterranean durum wheat landraces and 200 modern cultivars was phenotyped during three years for 21 agronomic and physiological traits and genotyped with 46,161 DArTseq markers. Modern cultivars showed greater yield, number of grains per spike (NGS) and harvest index (HI), but similar number of spikes per unit area (NS) and grain weight than the landraces. Modern cultivars had earlier heading but longer heading-anthesis and grain-filling periods than the landraces. They had greater RUE (Radiation Use Efficiency) up to anthesis and lower canopy temperature at anthesis than the landraces, but the opposite was true during the grain-filling period. Landraces produced more biomass at both anthesis and maturity. The 120 genotypes with a membership coefficient q > 0.8 to the five genetic subpopulations (SP) that structured the panel were related with the geographic distribution and evolutionary history of durum wheat. SP1 included landraces from eastern countries, the domestication region of the “Fertile Crescent.” SP2 and SP3 consisted of landraces from the north and the south Mediterranean shores, where durum wheat spread during its migration westward. Decreases in NS, grain-filling duration and HI, but increases in early soil coverage, days to heading, biomass at anthesis, grain-filling rate, plant height and peduncle length occurred during this migration. SP4 grouped modern cultivars gathering the CIMMYT/ICARDA genetic background, and SP5 contained modern north-American cultivars. SP4 was agronomically distant from the landraces, but SP5 was genetically and agronomically close to SP1. GWAS identified 2,046 marker-trait associations (MTA) and 144 QTL hotspots integrating 1,927 MTAs. Thirty-nine haplotype blocks (HB) with allelic differences among SPs and associated with 16 agronomic traits were identified within 13 QTL hotspots. Alleles in chromosomes 5A and 7A detected in landraces were associated with decreased yield. The late heading and short grain-filling period of SP2 and SP3 were associated with a hotspot on chromosome 7B. The heavy grains of SP3 were associated with hotspots on chromosomes 2A and 7A. The greater NGS and HI of modern cultivars were associated with allelic variants on chromosome 7A. A hotspot on chromosome 3A was associated with the high NGS, earliness and short stature of SP4.info:eu-repo/semantics/publishedVersio
From landraces to improved cultivars: Assessment of genetic diversity and population structure of Mediterranean wheat using SNP markers
Assessment of genetic diversity and population structure in crops is essential for breeding and germplasm conservation. A collection of 354 bread wheat genotypes, including Mediterranean landraces and modern cultivars representative of the ones most widely grown in the Mediterranean Basin, were characterized with 11196 single nucleotide polymorphism (SNP) markers. Total genetic diversity (HT) and polymorphic information content (PIC) were 0.36 and 0.30 respectively for both landraces and modern cultivars. Linkage disequilibrium for the modern cultivars was higher than for the landraces (0.18 and 0.12, respectively). Analysis of the genetic structure showed a clear geographical pattern for the landraces, which were clustered into three subpopulations (SPs) representing the western, northern and eastern Mediterranean, whereas the modern cultivars were structured according to the breeding programmes that developed them: CIMMYT/ICARDA, France/Italy, and Balkan/eastern European countries. The modern cultivars showed higher genetic differentiation (GST) and lower gene flow (0.1673 and 2.49, respectively) than the landraces (0.1198 and 3.67, respectively), indicating a better distinction between subpopulations. The maximum gene flow was observed between landraces from the northern Mediterranean SPs and the modern cultivars released mainly by French and Italian breeding programmes.info:eu-repo/semantics/publishedVersio
- …