60 research outputs found

    Dual RNA-seq of Nontypeable Haemophilus influenzae and Host Cell Transcriptomes Reveals Novel Insights into Host-Pathogen Cross Talk

    Get PDF
    ABSTRACT The ability to adhere and adapt to the human respiratory tract mucosa plays a pivotal role in the pathogenic lifestyle of nontypeable Haemophilus influenzae (NTHi). However, the temporal events associated with a successful colonization have not been fully characterized. In this study, by reconstituting the ciliated human bronchial epithelium in vitro, we monitored the global transcriptional changes in NTHi and infected mucosal epithelium simultaneously for up to 72 h by dual RNA sequencing. The initial stage of colonization was characterized by the binding of NTHi to ciliated cells. Temporal profiling of host mRNA signatures revealed significant dysregulation of the target cell cytoskeleton elicited by bacterial infection, with a profound effect on the intermediate filament network and junctional complexes. In response to environmental stimuli of the host epithelium, NTHi downregulated its central metabolism and increased the expression of transporters, indicating a change in the metabolic regime due to the availability of host substrates. Concurrently, the oxidative environment generated by infected cells instigated bacterial expression of stress-induced defense mechanisms, including the transport of exogenous glutathione and activation of the toxin-antitoxin system. The results of this analysis were validated by those of confocal microscopy, Western blotting, Bio-plex, and real-time quantitative reverse transcription-PCR (qRT-PCR). Notably, as part of our screening for novel signatures of infection, we identified a global profile of noncoding transcripts that are candidate small RNAs (sRNAs) regulated during human host infection in Haemophilus species. Our data, by providing a robust and comprehensive representation of the cross talk between the host and invading pathogen, provides important insights into NTHi pathogenesis and the development of efficacious preventive strategies. IMPORTANCE Simultaneous monitoring of infection-linked transcriptome alterations in an invading pathogen and its target host cells represents a key strategy for identifying regulatory responses that drive pathogenesis. In this study, we report the progressive events of NTHi colonization in a highly differentiated model of ciliated bronchial epithelium. Genome-wide transcriptome maps of NTHi during infection provided mechanistic insights into bacterial adaptive responses to the host niche, with modulation of the central metabolism as an important signature of the evolving milieu. Our data indicate that infected epithelia respond by substantial alteration of the cytoskeletal network and cytokine repertoire, revealing a dynamic cross talk that is responsible for the onset of inflammation. This work significantly enhances our understanding of the means by which NTHi promotes infection on human mucosae and reveals novel strategies exploited by this important pathogen to cause invasive disease

    Adaptive Response of Group B Streptococcus to High Glucose Conditions: New Insights on the CovRS Regulation Network

    Get PDF
    Although the contribution of carbohydrate catabolism to bacterial colonization and infection is well recognized, the transcriptional changes during these processes are still unknown. In this study, we have performed comparative global gene expression analysis of GBS in sugar-free versus high glucose milieu. The analysis revealed a differential expression of genes involved in metabolism, transport and host-pathogen interaction. Many of them appeared to be among the genes previously reported to be controlled by the CovRS two-component system. Indeed, the transcription profile of a Delta covRS strain grown in high-glucose conditions was profoundly affected. In particular, of the total genes described to be regulated by glucose, similar to 27% were under CovRS control with a functional role in protein synthesis, transport, energy metabolism and regulation. Among the CovRS dependent genes, we found bibA, a recently characterized adhesin involved in bacterial serum resistance and here reported to be down-regulated by glucose. ChIP analysis revealed that in the presence of glucose, CovR binds bibA promoter in vivo, suggesting that CovR may act as a negative regulator or a repressor. We also demonstrated that, as for other target promoters, chemical phosphorylation of CovR in aspartic acid increases its affinity for the bibA promoter region. The data reported in this study contribute to the understanding of the molecular mechanisms modulating the adaptation of GBS to glucose

    Nimesulide and acetaminophen for the treatment of juvenile migraine: a study for comparison of efficacy, safety and tolerability

    No full text
    none6The aim of this study was to compare the efficacy of acetaminophen versus nimesulide in the acute treatment of juvenile migraine. The study involved 66 children, aged 8 to 18 years, suffering from migraine without aura. (...)Risultati di RCTnoneSORIANI S.; BATTISTELLA PA; NACCARELLA C; TOZZI E.; FIUMANA E.; FANARO S.Soriani, Stefano; Battistella, Pa; Naccarella, C; Tozzi, E.; Fiumana, E.; Fanaro, Silvi

    Analysis of KRAS, NRAS and BRAF mutational profile by combination of in-tube hybridization and universal tag-microarray in tumor tissue and plasma of colorectal cancer patients.

    No full text
    Microarray technology fails in detecting point mutations present in a small fraction of cells from heterogeneous tissue samples or in plasma in a background of wild-type cell-free circulating tumor DNA (ctDNA). The aim of this study is to overcome the lack of sensitivity and specificity of current microarray approaches introducing a rapid and sensitive microarray-based assay for the multiplex detection of minority mutations of oncogenes (KRAS, NRAS and BRAF) with relevant diagnostics implications in tissue biopsies and plasma samples in metastatic colorectal cancer patients. In our approach, either wild-type or mutated PCR fragments are hybridized in solution, in a temperature gradient, with a set of reporters with a 5' domain, complementary to the target sequences and a 3' domain complementary to a surface immobilized probe. Upon specific hybridization in solution, which occurs specifically thanks to the temperature gradients, wild-type and mutated samples are captured at specific location on the surface by hybridization of the 3' reporter domain with its complementary immobilized probe sequence. The most common mutations in KRAS, NRAS and BRAF genes were detected in less than 90 minutes in tissue biopsies and plasma samples of metastatic colorectal cancer patients. Moreover, the method was able to reveal mutant alleles representing less than 0,3% of total DNA. We demonstrated detection limits superior to those provided by many current technologies in the detection of RAS and BRAF gene superfamily mutations, a level of sensitivity compatible with the analysis of cell free circulating tumor DNA in liquid biopsy

    Microarray Approach Combined with ddPCR: An Useful Pipeline for the Detection and Quantification of Circulating Tumour DNA Mutations

    No full text
    It has now been established that in biological fluids such as blood, it is possible to detect cancer causing genomic alterations by analysing circulating tumour DNA (ctDNA). Information derived from ctDNA offers a unique opportunity to enrich our understanding of cancer biology, tumour evolution and therapeutic efficacy and resistance. Here, we propose a workflow to identify targeted mutations by a customized microarray-based assay for the simultaneous detection of single point mutations in different oncogenes (KRAS, NRAS and BRAF) followed by droplet digital PCR (ddPCR) to determine the fractional abundance of the mutated allele. Genetic variants were determined in the plasma of 20 metastatic colorectal cancer (mCRC) patients previously genotyped on tissue biopsy at the diagnosis for medication planning (T0) and following the tumour genetic evolution during treatment phase (T1 and T2) with the objective of allowing therapy response prediction and monitoring. Our preliminary results show that this combined approach is suitable for routine clinical practice. The microarray platform enables for a rapid, specific and sensitive detection of the most common mutations suitable for high-throughput analysis without costly instrumentation while, the ddPCR, consents an absolute quantification of the mutated allele in a longitudinal observational study on patients undergoing targeted therapy

    3D Reconstruction of the Human Airway Mucosa <i>In Vitro</i> as an Experimental Model to Study NTHi Infections

    Get PDF
    <div><p>We have established an <i>in vitro</i> 3D system which recapitulates the human tracheo-bronchial mucosa comprehensive of the pseudostratified epithelium and the underlying stromal tissue. In particular, we reported that the mature model, entirely constituted of primary cells of human origin, develops key markers proper of the native tissue such as the mucociliary differentiation of the epithelial sheet and the formation of the basement membrane. The infection of the pseudo-tissue with a strain of NonTypeable <i>Haemophilus influenzae</i> results in bacteria association and crossing of the mucus layer leading to an apparent targeting of the stromal space where they release large amounts of vesicles and form macro-structures. In summary, we propose our <i>in vitro</i> model as a reliable and potentially customizable system to study mid/long term host-pathogen processes.</p></div
    corecore