5 research outputs found

    Effect of routine suction on lung aeration in critically ill neonates and young infants measured with electrical impedance tomography

    Get PDF
    Endotracheal suctioning is a widely used procedure to remove secretions from the airways of ventilated patients. Despite its prevalence, regional effects of this maneuver have seldom been studied. In this study, we explore its effects on regional lung aeration in neonates and young infants using electrical impedance tomography (EIT) as part of the large EU-funded multicenter observational study CRADL. 200 neonates and young infants in intensive care units were monitored with EIT for up to 72 h. EIT parameters were calculated to detect changes in ventilation distribution, ventilation inhomogeneity and ventilation quantity on a breath-by-breath level 5-10 min before and after suctioning. The intratidal change in aeration over time was investigated by means of regional expiratory time constants calculated from all respiratory cycles using an innovative procedure and visualized by 2D maps of the thoracic cross-section. 344 tracheal suctioning events from 51 patients could be analyzed. They showed no or very small changes of EIT parameters, with a dorsal shift of the center of ventilation by 0.5% of the chest diameter and a 7% decrease of tidal impedance variation after suctioning. Regional time constants did not change significantly. Routine suctioning led to EIT-detectable but merely small changes of the ventilation distribution in this study population. While still a measure requiring further study, the time constant maps may help clinicians interpret ventilation mechanics in specific cases

    Optimized breath detection algorithm in electrical impedance tomography

    Get PDF
    This paper defines a method for optimizing the breath delineation algorithms used in Electrical Impedance Tomography (EIT). In lung EIT the identification of the breath phases is central for generating tidal impedance variation images, subsequent data analysis and clinical evaluation. The optimisation of these algorithms is particularly important in neonatal care since the existing breath detectors developed for adults may give insufficient reliability in neonates due to their very irregular breathing pattern. Our approach is generic in the sense that it relies on the definition of a gold standard and the associated definition of detector sensitivity and specificity, an optimisation criterion and a set of detector parameters to be investigated. The gold standard has been defined by 11 clinicians with previous experience with EIT and the performance of our approach is described and validated using a neonatal EIT dataset acquired within the EU-funded CRADL project. Three different algorithms are proposed that are improving the breath detector performance by adding conditions on 1) maximum tidal breath rate obtained from zero-crossings of the EIT breathing signal, 2) minimum tidal impedance amplitude and 3) minimum tidal breath rate obtained from Time-Frequency (TF) analysis. As a baseline the zero crossing algorithm has been used with some default parameters based on the Swisstom EIT device. Based on the gold standard, the most crucial parameters of the proposed algorithms are optimised by using a simple exhaustive search and a weighted metric defined in connection with the Receiver Operating Characterics (ROC). This provides a practical way to achieve any desirable trade-off between the sensitivity and the specificity of the detectors. [Abstract copyright: © 2018 Institute of Physics and Engineering in Medicine.

    Model selection based algorithm in neonatal Chest EIT

    Get PDF
    This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic approach which automatically selects the best estimated forward model fit from pre-stored library models. Absolute/static image reconstruction is performed as the core of the posterior probability calculations. The validity and reliability of the algorithm in detecting a suitable model in the presence of measurement noise is studied with simulated and measured data from 11 patients. The paper also demonstrates the potential improvements on the clinical parameters extracted from EIT images by considering a unique case study with a neonate patient undergoing computed tomography imaging as clinical indication prior to EIT monitoring. Two well-known image reconstruction techniques, namely GREIT and tSVD, are implemented to create the final tidal images. The impacts of appropriate model selection on the clinical extracted parameters such as center of ventilation and silent spaces are investigated. The results show significant improvements to the final reconstructed images and more importantly to the clinical EIT parameters extracted from the images that are crucial for decision-making and further interventions

    A parametric model for the changes in the complex valued conductivity of a lung during tidal breathing

    Get PDF
    Classical homogenization theory based on the Hashin-Shtrikman coated ellipsoids is used to model the changes in the complex valued conductivity (or admittivity) of a lung during tidal breathing. Here, the lung is modeled as a two-phase composite material where the alveolar air-filling corresponds to the inclusion phase. The theory predicts a linear relationship between the real and the imaginary parts of the change in the complex valued conductivity of a lung during tidal breathing, and where the loss cotangent of the change is approximately the same as of the effective background conductivity and hence easy to estimate. The theory is illustrated with numerical examples, as well as by using reconstructed Electrical Impedance Tomography (EIT) images based on clinical data from an ongoing study within the EU-funded CRADL project. The theory may be potentially useful for improving the imaging algorithms and clinical evaluations in connection with lung EIT for respiratory management and monitoring in neonatal intensive care units

    Prolonged Continuous Monitoring of Regional Lung Function in Infants with Respiratory Failure

    Get PDF
    Rationale: Electrical impedance tomography (EIT) allows instantaneous and continuous visualization of regional ventilation and changes in end-expiratory lung volume at the bedside. There is particular interest in using EIT for monitoring in critically ill neonates and young children with respiratory failure. Previous studies have focused only on short-term monitoring in small populations. The feasibility and safety of prolonged monitoring with EIT in neonates and young children have not been demonstrated yet. Objectives: To evaluate the feasibility and safety of long-term EIT monitoring in a routine clinical setting and to describe changes in ventilation distribution and homogeneity over time and with positioning in a multicenter cohort of neonates and young children with respiratory failure. Methods: At four European University hospitals, we conducted an observational study (NCT02962505) on 200 patients with postmenstrual ages (PMA) between 25 weeks and 36 months, at risk for or suffering from respiratory failure. Continuous EIT data were obtained using a novel textile 32-electrode interface and recorded at 48 images/s for up to 72 hours. Clinicians were blinded to EIT images during the recording. EIT parameters and the effects of body position on ventilation distribution were analyzed offline. Results: The average duration of EIT measurements was 53 6 20 hours. Skin contact impedance was sufficient to allow image reconstruction for valid ventilation analysis during a median of 92% (interquartile range, 77–98%) of examination time. EIT examinations were well tolerated, with minor skin irritations (temporary redness or imprint) occurring in 10% of patients and no moderate or severe adverse events. Higher ventilation amplitude was found in the dorsal and right lung areas when compared with the ventral and left regions, respectively. Prone positioning resulted in an increase in the ventilation-related EIT signal in the dorsal hemithorax, indicating increased ventilation of the dorsal lung areas. Lateral positioning led to a redistribution of ventilation toward the dependent lung in preterm infants and to the nondependent lung in patients with PMA . 37 weeks. Conclusions: EIT allows continuous long-term monitoring of regional lung function in neonates and young children for up to 72 hours with minimal adverse effects. Our study confirmed the presence of posture-dependent changes in ventilation distribution and their dependency on PMA in a large patient cohort
    corecore