11 research outputs found

    Spontaneous mutation rate in the smallest photosynthetic eukaryotes

    Get PDF
    Mutation is the ultimate source of genetic variation, and knowledge of mutation rates is fundamental for our understanding of all evolutionary processes. High throughput sequencing of mutation accumulation lines has provided genome wide spontaneous mutation rates in a dozen model species, but estimates from nonmodel organisms from much of the diversity of life are very limited. Here, we report mutation rates in four haploid marine bacterial-sized photosynthetic eukaryotic algae; Bathycoccus prasinos, Ostreococcus tauri, Ostreococcus mediterraneus, and Micromonas pusilla. The spontaneous mutation rate between species varies from Ό = 4.4 × 10−10 to 9.8 × 10−10 mutations per nucleotide per generation. Within genomes, there is a two-fold increase of the mutation rate in intergenic regions, consistent with an optimization of mismatch and transcription-coupled DNA repair in coding sequences. Additionally, we show that deviation from the equilibrium GC content increases the mutation rate by ∌2% to ∌12% because of a GC bias in coding sequences. More generally, the difference between the observed and equilibrium GC content of genomes explains some of the inter-specific variation in mutation rates

    Population genomics of picophytoplankton unveils novel chromosome hypervariability

    Get PDF
    Tiny photosynthetic microorganisms that form the picoplankton (between 0.3 and 3 mm in diameter) are at the base of the food web in many marine ecosystems, and their adaptability to environmental change hinges on standing genetic variation. Although the genomic and phenotypic diversity of the bacterial component of the oceans has been intensively studied, little is known about the genomic and phenotypic diversity within each of the diverse eukaryotic species present. We report the level of genomic diversity in a natural population of Ostreococcus tauri (Chlorophyta, Mamiellophyceae), the smallest photosynthetic eukaryote. Contrary to the expec- tations of clonal evolution or cryptic species, the spectrum of genomic polymorphism observed suggests a large panmictic population (an effective population size of 1.2 × 107) with pervasive evidence of sexual reproduction. De novo assemblies of low-coverage chromosomes reveal two large candidate mating-type loci with suppressed recom- bination, whose origin may pre-date the speciation events in the class Mamiellophyceae. This high genetic diversity is associated with large phenotypic differences between strains. Strikingly, resistance of isolates to large double- stranded DNA viruses, which abound in their natural environment, is positively correlated with the size of a single hypervariable chromosome, which contains 44 to 156 kb of strain-specific sequences. Our findings highlight the role of viruses in shaping genome diversity in marine picoeukaryotes

    Organellar inheritance in the green lineage: insights from Ostreococcus tauri

    Get PDF
    Along the green lineage (Chlorophyta and Streptophyta), mitochondria and chloroplast are mainly uniparentally transmitted and their evolution is thus clonal. The mode of organellar inheritance in their ancestor is less certain. The inability to make clear phylogenetic inference is partly due to a lack of information for deep branching organisms in this lineage. Here, we investigate organellar evolution in the early branching green alga Ostreococcus tauri using population genomics data from the complete mitochondrial and chloroplast genomes. The haplotype structure is consistent with clonal evolution in mitochondria, while we find evidence for recombination in the chloroplast genome. The number of recombination events in the genealogy of the chloroplast suggests that recombination, and thus biparental inheritance, is not rare. Consistent with the evidence of recombination, we find that the ratio of the number of nonsynonymous to the synonymous polymorphisms per site is lower in chloroplast than in the mitochondria genome. We also find evidence for the segregation of two selfish genetic elements in the chloroplast. These results shed light on the role of recombination and the evolutionary history of organellar inheritance in the green lineage

    Genome Sequence of Maribius sp. Strain MOLA 401, a Marine Roseobacter with a Quorum-Sensing Cell-Dependent Physiology

    No full text
    International audienceMaribius sp. strain MOLA401 is an alphaproteobacterium isolated from a coral reef lagoon located in New Caledonia, France. We report the genome sequence and its annotation which, interestingly, reveals the presence of genes involved in quorum sensing. This is the first report of a full genome within the genus Maribius

    Genome Sequence of the Sponge-Associated Ruegeria halocynthiae Strain MOLA R1/13b, a Marine Roseobacter with Two Quorum-Sensing-Based Communication Systems

    No full text
    International audienceRuegeria halocynthiae MOLA R1/13b is an alphaproteobacterium isolated from the Mediterranean sea sponge Crambe crambe. We report here the genome sequence and its annotation, revealing the presence of quorum-sensing genes. This is the first report of the full genome of a Ruegeria halocynthiae strain

    Quorum sensing and quorum quenching in the phycosphere of phytoplankton: a case of chemical interactions in ecology

    No full text
    International audienceThe interactions between bacteria and phytoplankton regulate many important biogeochemical reactions in the marine environment, including those in the global carbon, nitrogen, and sulfur cycles. At the microscopic level, it is now well established that important consortia of bacteria colonize the phycosphere, the immediate environment of phytoplankton cells. In this microscale environment, abundant bacterial cells are organized in a structured biofilm, and exchange information through the diffusion of small molecules called semiochemicals. Among these processes, quorum sensing plays a particular role as, when a sufficient abundance of cells is reached, it allows bacteria to coordinate their gene expression and physiology at the population level. In contrast, quorum quenching mechanisms are employed by many different types of microorganisms that limit the coordination of antagonistic bacteria. This review synthesizes quorum sensing and quorum quenching mechanisms evidenced to date in the phycosphere, emphasizing the implications that these signaling systems have for the regulation of bacterial communities and their activities. The diversity of chemical compounds involved in these processes is examined. We further review the bacterial functions regulated in the phycosphere by quorum sensing, which include biofilm formation, nutrient acquisition, and emission of algaecides. We also discuss quorum quenching compounds as antagonists of quorum sensing, their function in the phycosphere, and their potential biotechnological applications. Overall, the current state of the art demonstrates that quorum sensing and quorum quenching regulate a balance between a symbiotic and a parasitic way of life between bacteria and their phytoplankton hos

    Large Diversity and Original Structures of Acyl-Homoserine Lactones in Strain MOLA 401, a Marine Rhodobacteraceae Bacterium

    No full text
    International audienceQuorum sensing (QS) is a density-dependent mechanism allowing bacteria to synchronize their physiological activities, mediated by a wide range of signaling molecules including N-acyl-homoserine lactones (AHLs). Production of AHL has been identified in various marine strains of Proteobacteria. However, the chemical diversity of these molecules still needs to be further explored. In this study, we examined the diversity of AHLs produced by strain MOLA 401, a marine Alphaproteobacterium that belongs to the ubiquitous Rhodobacteraceae family. We combined an original biosensors-based guided screening of extract microfractions with liquid chromatography coupled to mass spectrometry (MS), High Resolution MS/MS and Nuclear Magnetic Resonance. This approach revealed the unsuspected capacity of a single Rhodobacteraceae strain to synthesize 20 different compounds, which are most likely AHLs. Also, some of these AHLs possessed original features that have never been previously observed, including long (up to 19 carbons) and poly-hydroxylated acyl side chains, revealing new molecular adaptations of QS to planktonic life and a larger molecular diversity than expected of molecules involved in cell–cell signaling within a single strain

    Diversity of quorum sensing autoinducer synthases in the Global Ocean Sampling metagenomic database

    No full text
    International audienceQuorum sensing (QS) is a cell-to-cell signalling pathway that allows bacteria to synchronize their genetic expression. It is mediated by autoinducers (AI), including (1) acyl-homoserine lactones (AHLs or AI-1), produced by Proteobacteria using AinS, LuxI and HdtS synthase families and (2) furanosyl-diester-borate (FDB or AI-2), produced by a large range of phylogenetically diverse bacteria and synthetized by the LuxS family. Few data have been collected about the presence and importance of QS in marine waters using culture independent methods. In this study, we examined the presence and the diversity of AI-1 and AI-2 synthases in the Global Ocean Sampling (GOS), a large metagenomic database, covering 68 stations across 3 oceans. We built 4 reference protein databases with maximal phylogenetic coverage containing all known AI synthase sequences to retrieve AI synthases sequences from the GOS metagenomes. We retrieved 29 environmental sequences affiliated to LuxI (synthesizing AI-1), 653 related to HdtS (AI-1), 31 related to LuxS (AI-2) and only one for AinS (AI-1). AI synthases sequences were found in the 3 oceans covered by the GOS cruise and spanned a large phylogenetic diversity. These data revealed a large number of new marine AI sequences, suggesting that QS based on AI-1 diffusion is a widespread mechanism in the marine environmen

    Marinobacter dominates the bacterial community of the Ostreococcus tauri phycosphere in culture

    No full text
    Microalgal-bacterial interactions are commonly found in marine environments and are well known in diatom cultures maintained in laboratory. These interactions also exert strong effects on bacterial and algal diversity in the oceans. Small green eukaryote algae of the class Mamiellophyceae (Chlorophyta) are ubiquitous and some species, such as Ostreococcus spp., are particularly important in Mediterranean coastal lagoons, and are observed as dominant species during phytoplankton blooms in open sea. Despite this, little is known about the diversity of bacteria that might facilitate or hinder O. tauri growth. We show, using rDNA 16S sequences, that the bacterial community found in O. tauri RCC4221 laboratory cultures is dominated by Îł-proteobacteria from the Marinobacter genus, regardless of the growth phase of O. tauri RCC4221, the photoperiod used, or the nutrient conditions (limited in nitrogen or phosphorous) tested. Several strains of M. algicola were detected, all closely related to strains found in association with taxonomically distinct organisms, particularly with dinoflagellates and coccolithophorids. These sequences were more distantly related to M. adhaerens, M. aquaeoli and bacteria usually associated to euglenoids. This is the first time, to our knowledge, that distinct Marinobacter strains have been found to be associated with a green alga in culture

    Marinobacter Dominates the Bacterial Community of the Ostreococcus tauri Phycosphere in Culture

    Get PDF
    International audienceMicroalgal–bacterial interactions are commonly found in marine environments and are well known in diatom cultures maintained in laboratory. These interactions also exert strong effects on bacterial and algal diversity in the oceans. Small green eukaryote algae of the class Mamiellophyceae (Chlorophyta) are ubiquitous and some species, such as Ostreococcus spp., are particularly important in Mediterranean coastal lagoons, and are observed as dominant species during phytoplankton blooms in open sea. Despite this, little is known about the diversity of bacteria that might facilitate or hinder O. tauri growth. We show, using rDNA 16S sequences, that the bacterial community found in O. tauri RCC4221 laboratory cultures is dominated by γ-proteobacteria from the Marinobacter genus, regardless of the growth phase of O. tauri RCC4221, the photoperiod used, or the nutrient conditions (limited in nitrogen or phosphorous) tested. Several strains of Marinobacter algicola were detected, all closely related to strains found in association with taxonomically distinct organisms, particularly with dinoflagellates and coccolithophorids. These sequences were more distantly related to M. adhaerens, M. aquaeoli and bacteria usually associated to euglenoids. This is the first time, to our knowledge, that distinct Marinobacter strains have been found to be associated with a green alga in culture
    corecore