39 research outputs found

    Clinical and Molecular Epidemiology of Crimean-Congo Hemorrhagic Fever in Humans in Uganda, 2013-2019

    Get PDF
    Crimean-Congo Hemorrhagic Fever (CCHF) is endemic in Uganda, yet its epidemiology remains largely uncharacterized. To better understand its occurrence within Uganda, case reports of patients hospitalized with CCHF between 2013 and 2019 were reviewed. Further, genome sequences of CCHF-positive RNA obtained during this period were determined for phylogenetic comparisons. We found that a total of 32 cases (75% males; CFR, 31.2%), aged between 9 to 68 years, were reported during the study period. Most cases were detected during July to December of each outbreak year (81.2%; P < 0.01) and were located along the "cattle corridor" (68.7%, P = 0.03). The most common presenting symptoms were fever (93.8%), hemorrhage (81.3%), headache (78.1 %), fatigue (68.8%), vomiting (68.8%), and myalgia (65.6%). In five patients for whom hematological data were available, varied abnormalities were observed including thrombocytopenia, leukopenia, anemia, lymphopenia, lymphocytosis, polycythemia, and microcytosis. About 56.3% (P = 0.47) of patients reported tick bites or exposure to livestock as their potential source of infection. Person-to-person transmission was suspected for two cases. Using unbiased metagenomics, we found that the viral S- and L- segments have remained conserved in Africa 2 Glade since the 1950s. In contrast, the M segment split into two geographically interspersed Glades; one that belongs to Africa 2 and another that is ancestral to Africa 1 and 2. Overall, this data summarizes information on the history and clinical presentation of human CCHF in Uganda. Importantly, it identifies vulnerable populations as well as temporal and geographic regions in Uganda where surveillance and control interventions could be focused

    First laboratory confirmation and sequencing of Zaire ebolavirus in Uganda following two independent introductions of cases from the 10th Ebola Outbreak in the Democratic Republic of the Congo, June 2019.

    Get PDF
    Uganda established a domestic Viral Hemorrhagic Fever (VHF) testing capacity in 2010 in response to the increasing occurrence of filovirus outbreaks. In July 2018, the neighboring Democratic Republic of Congo (DRC) experienced its 10th Ebola Virus Disease (EVD) outbreak and for the duration of the outbreak, the Ugandan Ministry of Health (MOH) initiated a national EVD preparedness stance. Almost one year later, on 10th June 2019, three family members who had contracted EVD in the DRC crossed into Uganda to seek medical treatment. Samples were collected from all the suspected cases using internationally established biosafety protocols and submitted for VHF diagnostic testing at Uganda Virus Research Institute. All samples were initially tested by RT-PCR for ebolaviruses, marburgviruses, Rift Valley fever (RVF) virus and Crimean-Congo hemorrhagic fever (CCHF) virus. Four people were identified as being positive for Zaire ebolavirus, marking the first report of Zaire ebolavirus in Uganda. In-country Next Generation Sequencing (NGS) and phylogenetic analysis was performed for the first time in Uganda, confirming the outbreak as imported from DRC at two different time point from different clades. This rapid response by the MoH, UVRI and partners led to the control of the outbreak and prevention of secondary virus transmission

    Uganda's experience in Ebola virus disease outbreak preparedness, 2018-2019.

    Get PDF
    BACKGROUND: Since the declaration of the 10th Ebola Virus Disease (EVD) outbreak in DRC on 1st Aug 2018, several neighboring countries have been developing and implementing preparedness efforts to prevent EVD cross-border transmission to enable timely detection, investigation, and response in the event of a confirmed EVD outbreak in the country. We describe Uganda's experience in EVD preparedness. RESULTS: On 4 August 2018, the Uganda Ministry of Health (MoH) activated the Public Health Emergency Operations Centre (PHEOC) and the National Task Force (NTF) for public health emergencies to plan, guide, and coordinate EVD preparedness in the country. The NTF selected an Incident Management Team (IMT), constituting a National Rapid Response Team (NRRT) that supported activation of the District Task Forces (DTFs) and District Rapid Response Teams (DRRTs) that jointly assessed levels of preparedness in 30 designated high-risk districts representing category 1 (20 districts) and category 2 (10 districts). The MoH, with technical guidance from the World Health Organisation (WHO), led EVD preparedness activities and worked together with other ministries and partner organisations to enhance community-based surveillance systems, develop and disseminate risk communication messages, engage communities, reinforce EVD screening and infection prevention measures at Points of Entry (PoEs) and in high-risk health facilities, construct and equip EVD isolation and treatment units, and establish coordination and procurement mechanisms. CONCLUSION: As of 31 May 2019, there was no confirmed case of EVD as Uganda has continued to make significant and verifiable progress in EVD preparedness. There is a need to sustain these efforts, not only in EVD preparedness but also across the entire spectrum of a multi-hazard framework. These efforts strengthen country capacity and compel the country to avail resources for preparedness and management of incidents at the source while effectively cutting costs of using a "fire-fighting" approach during public health emergencies

    Marburg virus disease outbreak in Kween District Uganda, 2017: Epidemiological and laboratory findings.

    Get PDF
    INTRODUCTION: In October 2017, a blood sample from a resident of Kween District, Eastern Uganda, tested positive for Marburg virus. Within 24 hour of confirmation, a rapid outbreak response was initiated. Here, we present results of epidemiological and laboratory investigations. METHODS: A district task force was activated consisting of specialised teams to conduct case finding, case management and isolation, contact listing and follow up, sample collection and testing, and community engagement. An ecological investigation was also carried out to identify the potential source of infection. Virus isolation and Next Generation sequencing were performed to identify the strain of Marburg virus. RESULTS: Seventy individuals (34 MVD suspected cases and 36 close contacts of confirmed cases) were epidemiologically investigated, with blood samples tested for MVD. Only four cases met the MVD case definition; one was categorized as a probable case while the other three were confirmed cases. A total of 299 contacts were identified; during follow- up, two were confirmed as MVD. Of the four confirmed and probable MVD cases, three died, yielding a case fatality rate of 75%. All four cases belonged to a single family and 50% (2/4) of the MVD cases were female. All confirmed cases had clinical symptoms of fever, vomiting, abdominal pain and bleeding from body orifices. Viral sequences indicated that the Marburg virus strain responsible for this outbreak was closely related to virus strains previously shown to be circulating in Uganda. CONCLUSION: This outbreak of MVD occurred as a family cluster with no additional transmission outside of the four related cases. Rapid case detection, prompt laboratory testing at the Uganda National VHF Reference Laboratory and presence of pre-trained, well-prepared national and district rapid response teams facilitated the containment and control of this outbreak within one month, preventing nationwide and global transmission of the disease

    Investigation of an isolated case of human Crimean–Congo hemorrhagic fever in Central Uganda, 2015

    No full text
    Background: Crimean–Congo hemorrhagic fever (CCHF) is the most geographically widespread tick-borne viral infection. Outbreaks of CCHF in sub-Saharan Africa are largely undetected and thus under-reported. On November 9, 2015, the National Viral Hemorrhagic Fever Laboratory at the Uganda Virus Research Institute received an alert for a suspect VHF case in a 33-year-old male who presented with VHF compatible signs and symptoms at Mengo Hospital in Kampala. Methods: A blood sample from the suspect patient was tested by RT-PCR for CCHF and found positive. Serological testing on sequential blood specimens collected from this patient showed increasing anti-CCHFV IgM antibody titers, confirming recent infection. Repeat sampling of the confirmed case post recovery showed high titers for anti-CCHFV-specific IgG. An epidemiological outbreak investigation was initiated following the initial RT-PCR positive detection to identify any additional suspect cases. Results: Only a single acute case of CCHF was detected from this outbreak. No additional acute CCHF cases were identified following field investigations. Environmental investigations collected 53 tick samples, with only 1, a Boophilus decoloratus, having detectable CCHFV RNA by RT-PCR. Full-length genomic sequencing on a viral isolate from the index human case showed the virus to be related to the DRC (Africa 2) lineage. Conclusions: This is the fourth confirmed CCHF outbreak in Uganda within 2 years after more than 50 years of no reported human CCHF cases in this country. Our investigations reaffirm the endemicity of CCHFV in Uganda, and show that exposure to ticks poses a significant risk for human infection. These findings also reflect the importance of having an established national VHF surveillance system and diagnostic capacity in a developing country like Uganda, in order to identify the first cases of VHF outbreaks and rapidly respond to reduce secondary cases. Additional efforts should focus on implementing effective tick control methods and investigating the circulation of CCHFV throughout the country. Keywords: Crimean–Congo hemorrhagic fever, Uganda, Outbreak, CCH

    Seroepidemiological investigation of Crimean Congo hemorrhagic fever virus in livestock in Uganda, 2017.

    No full text
    Crimean-Congo Hemorrhagic fever (CCHF) is an important zoonotic disease transmitted to humans both by tick vectors and contact with fluids from an infected animal or human. Although animals are not symptomatic when infected, they are the main source of human infection. Uganda has reported sporadic human outbreaks of CCHF in various parts of the country since 2013. We designed a nationwide epidemiological study to investigate the burden of CCHF in livestock. A total of 3181 animals were sampled; 1732 cattle (54.4%), 1091 goats (34.3%), and 358 sheep (11.3%) resulting in overall livestock seropositivity of IgG antibodies against CCHF virus (CCHFV) of 31.4% (999/3181). Seropositivity in cattle was 16.9% and in sheep and goats was 48.8%. Adult and juvenile animals had higher seropositivity compared to recently born animals, and seropositivity was higher in female animals (33.5%) compared to male animals (24.1%). Local breeds had higher (36.8%) compared to exotic (2.8%) and cross breeds (19.3%). Animals that had a history of abortion or stillbirth had higher seropositivity compared to those without a history of abortion or stillbirth. CCHFV seropositivity appeared to be generally higher in northern districts of the country, though spatial trends among sampled districts were not examined. A multivariate regression analysis using a generalized linear mixed model showed that animal species, age, sex, region, and elevation were all significantly associated with CCHFV seropositivity after adjusting for the effects of other model predictors. This study shows that CCHFV is actively circulating in Uganda, posing a serious risk for human infection. The results from this study can be used to help target surveillance efforts for early case detection in animals and limit subsequent spillover into humans

    Rift Valley Fever: A survey of knowledge, attitudes, and practice of slaughterhouse workers and community members in Kabale District, Uganda

    No full text
    <div><p>Background</p><p>Rift Valley Fever virus (RVF) is a zoonotic virus in the <i>Phenuiviridae</i> family. RVF outbreaks can cause significant morbidity and mortality in humans and animals. Following the diagnosis of two RVF cases in March 2016 in southern Kabale district, Uganda, we conducted a knowledge, attitudes and practice (KAP) survey to identify knowledge gaps and at-risk behaviors related to RVF.</p><p>Methodology/Principal findings</p><p>A multidisciplinary team interviewed 657 community members, including abattoir workers, in and around Kabale District, Uganda. Most participants (90%) had knowledge of RVF and most (77%) cited radio as their primary information source. Greater proportions of farmers (68%), herdsmen (79%) and butchers (88%) thought they were at risk of contracting RVF compared to persons in other occupations (60%, p<0.01). Participants most frequently identified bleeding as a symptom of RVF. Less than half of all participants reported fever, vomiting, and diarrhea as common RVF symptoms in either humans or animals. The level of knowledge about human RVF symptoms did not vary by occupation; however more farmers and butchers (36% and 51%, respectively) had knowledge of RVF symptoms in animals compared to those in other occupations (30%, p<0.01). The use of personal protective equipment (PPE) when handling animals varied by occupation, with 77% of butchers using some PPE and 12% of farmers using PPE. Although most butchers said that they used PPE, most used gumboots (73%) and aprons (60%) and less than 20% of butchers used gloves or eye protection when slaughtering.</p><p>Conclusions</p><p>Overall, knowledge, attitudes and practice regarding RVF in Kabale District Uganda could be improved through educational efforts targeting specific populations.</p></div

    Sporadic outbreaks of crimean-congo haemorrhagic fever in Uganda, July 2018-January 2019.

    No full text
    IntroductionCrimean-Congo haemorrhagic fever (CCHF) is a tick-borne, zoonotic viral disease that causes haemorrhagic symptoms. Despite having eight confirmed outbreaks between 2013 and 2017, all within Uganda's 'cattle corridor', no targeted tick control programs exist in Uganda to prevent disease. During a seven-month-period from July 2018-January 2019, the Ministry of Health confirmed multiple independent CCHF outbreaks. We investigated to identify risk factors and recommend interventions to prevent future outbreaks.MethodsWe defined a confirmed case as sudden onset of fever (≥37.5°C) with ≥4 of the following signs and symptoms: anorexia, vomiting, diarrhoea, headache, abdominal pain, joint pain, or sudden unexplained bleeding in a resident of the affected districts who tested positive for Crimean-Congo haemorrhagic fever virus (CCHFv) by RT-PCR from 1 July 2018-30 January 2019. We reviewed medical records and performed active case-finding. We conducted a case-control study and compared exposures of case-patients with age-, sex-, and sub-county-matched control-persons (1:4).ResultsWe identified 14 confirmed cases (64% males) with five deaths (case-fatality rate: 36%) from 11 districts in western and central region. Of these, eight (73%) case-patients resided in Uganda's 'cattle corridor'. One outbreak involved two case-patients and the remainder involved one. All case-patients had fever and 93% had unexplained bleeding. Case-patients were aged 6-36 years, with persons aged 20-44 years more affected (AR: 7.2/1,000,000) than persons ≤19 years (2.0/1,000,000), p = 0.015. Most (93%) case-patients had contact with livestock ≤2 weeks before symptom onset. Twelve (86%) lived ConclusionsCCHF outbreaks occurred sporadically during 2018-2019, both within and outside 'cattle corridor' districts of Uganda. Most cases were associated with tick exposure. The Ministry of Health should partner with the Ministry of Agriculture, Animal Industry and Fisheries to develop joint nationwide tick control programs and strategies with shared responsibilities through a One Health approach

    Rift valley fever viral load correlates with the human inflammatory response and coagulation pathway abnormalities in humans with hemorrhagic manifestations

    No full text
    <div><p>Rift Valley fever virus is an arbovirus that affects both livestock and humans throughout Africa and in the Middle East. Despite its endemicity throughout Africa, it is a rare event to identify an infected individual during the acute phase of the disease and an even rarer event to collect serial blood samples from the affected patient. Severely affected patients can present with hemorrhagic manifestations of disease. In this study we identified three Ugandan men with RVFV disease that was accompanied by hemorrhagic manifestations. Serial blood samples from these men were analyzed for a series of biomarkers specific for various aspects of human pathophysiology including inflammation, endothelial function and coagulopathy. There were significant differences between biomarker levels in controls and cases both early during the illness and after clearance of viremia. Positive correlation of viral load with markers of inflammation (IP-10, CRP, Eotaxin, MCP-2 and Granzyme B), markers of fibrinolysis (tPA and D-dimer), and markers of endothelial function (sICAM-1) were all noted. However, and perhaps most interesting given the fact that these individuals exhibited hemorrhagic manifestations of disease, was the finding of a negative correlation between viral load and P-selectin, ADAMTS13, and fibrinogen all of which are associated with coagulation pathways occurring on the endothelial surface.</p></div
    corecore