3,656 research outputs found

    Femtosecond carrier dynamics and saturable absorption in graphene suspensions

    Full text link
    Nonlinear optical properties and carrier relaxation dynamics in graphene, suspended in three different solvents, are investigated using femtosecond (80 fs pulses) Z-scan and degenerate pumpprobe spectroscopy at 790 nm. The results demonstrate saturable absorption property of graphene with a nonlinear absorption coefficient, betabeta, of ~2 to 9x10^-8 cm/W. Two distinct time scales associated with the relaxation of photoexcited carriers, a fast one in the range of 130-330 fs (related to carrier-carrier scattering) followed by a slower one in 3.5-4.9 ps range (associated with carrier-phonon scattering) are observed.Comment: 3 pages, 2 figures, 2 table

    Detection of Sugar-Lectin Interactions by Multivalent Dendritic Sugar Functionalized Single-Walled Carbon Nanotubes

    Full text link
    We show that single walled carbon nanotubes (SWNT) decorated with sugar functionalized poly (propyl ether imine) (PETIM) dendrimer is a very sensitive platform to quantitatively detect carbohydrate recognizing proteins, namely, lectins. The changes in electrical conductivity of SWNT in field effect transistor device due to carbohydrate - protein interactions form the basis of present study. The mannose sugar attached PETIM dendrimers undergo charge - transfer interactions with the SWNT. The changes in the conductance of the dendritic sugar functionalized SWNT after addition of lectins in varying concentrations were found to follow the Langmuir type isotherm, giving the concanavalin A (Con A) - mannose affinity constant to be 8.5 x 106 M-1. The increase in the device conductance observed after adding 10 nM of Con A is same as after adding 20 \muM of a non - specific lectin peanut agglutinin, showing the high specificity of the Con A - mannose interactions. The specificity of sugar-lectin interactions was characterized further by observing significant shifts in Raman modes of the SWNT.Comment: 12 pages, 3 figure

    Precise time and frequency intercomparison between NPL, India and PTB, Federal Republic of Germany via satellite symphonie-1

    Get PDF
    A time and frequency intercomparison experiment conducted using Earth stations in New Delhi, India and Raisting, FRG is described. The NPL clock was placed at New Delhi Earth Station and the Raisting Clock was calibrated with PTB/Primary standard via LORAN-C and travelling clocks. The random uncertainity of time comparisons, represented by two sample Allan Variance sigma (30 seconds), was less than 10 nanoseconds. The relative frequency difference between the NPL and Raisting Clocks, SNPL, RAIS, as measured over the 44 days period was found to be -15.7 x 10 to the -13th power. The relative frequency difference between PTB Primary Standard and Raisting Clock, SPTB, RAIS, during this period, was measured to be -22.8 x 10 to the -13th power. The relative frequency difference between NPL clock and PTB Primary Standard, SNPL, PTB, thus, is +7.1 x 10 to the -13th power. The clock rate (UTC, India) of +7.1 + or - 0.5 x 10 to the -13th power, agrees well with that obtained via VLF phase measurements over one year period and with USNO travelling clock time comparisons made in September, 1980

    Interactive approaches to second/foreign language reading and their implications

    Get PDF
    Reading is an important activity in both first language (L1) and second/foreign language (SL/ FL) classrooms. Yet, conscious research into the process of reading is a recent activity. This research has brought about a significant change in our knowledge of what reading is. It tells us that there are three kinds of reading processes: (1) reading as decoding what the writer has coded, a bottom-up language-driven process; (2) reading as a top-down, concept-driven process; and (3) reading as an interactive compensatory process

    Rapidity distribution as a probe for elliptical flow at intermediate energies

    Full text link
    Interplay between the spectator and participant matter in heavy-ion collisions is investigated within isospin dependent quantum molecular dynamics (IQMD) model in term of rapidity distribution of light charged particles. The effect of different types and size rapidity distributions is studied in elliptical flow. The elliptical flow patterns show important role of the nearby spectator matter on the participant zone. This role is further explained on the basis of passing time of the spectator and expansion time of the participant zone. The transition from the in-plane to out-of-plane is observed only when the mid-rapidity region is included in the rapidity bin, otherwise no transition occurs. The transition energy is found to be highly sensitive towards the size of the rapidity bin, while weakly on the type of the rapidity distribution. The theoretical results are also compared with the experimental findings and are found in good agreement.Comment: 8 figure

    Designing Second Language Curriculum

    Get PDF
    Through this article, I have attempted to study the designing of a second language (L2) curriculum. The aim is not to suggest a new theory of L2 curriculum, but to describe in simple non-technical language the existing theory and its essential components. I will also explore how the various components of the theory have been used to design an L2 syllabus. The overall aim is to describe the theory and its practice over the years for the benefit of non-specialist teachers assigned the role of teaching L2

    Is the `IR Coincidence' Just That?

    Full text link
    (Abridged) Motch (1985) suggested that in the hard state of GX 339-4 the soft X-ray power-law extrapolated backward in energy agrees with the IR flux. Corbel & Fender (2002) showed that the hard state radio power-law extrapolated forward in energy meets the extrapolated X-ray power-law at an IR break, which was explicitly observed twice in GX 339-4. This `IR coincidence' has been cited as further evidence that a jet might make a significant contribution to the X-rays in hard state systems. We explore this hypothesis with a series of simultaneous radio/X-ray observations of GX 339-4, taken during its 1997, 1999, and 2002 hard states. We fit these spectra, in detector space, with a simple, but remarkably successful, doubly broken power-law that requires an IR spectral break. For these observations, the break position and the integrated radio/IR flux have stronger dependences upon the X-rays than the simplest jet predictions. If one allows for a softening of the X-ray power law with increasing flux, then the jet model agrees with the correlation. We also find evidence that the radio/X-ray fcorrelation previously observed in GX 339-4 shows a `parallel track' for the 2002 hard state. The slope of the 2002 correlation is consistent with prior observations; however, the radio amplitude is reduced. We then examine the correlation in Cyg X-1 through the use of radio data, obtained with the Ryle radio telescope, and RXTE data, from the ASM and pointed observations. We again find evidence of `parallel tracks', and here they are associated with `failed transitions' to the soft state. We also find that for Cyg X-1 the radio flux is more fundamentally correlated with the hard X-ray flux.Comment: To Appear in the July 2005 Astrophysical Journal; 9 Pages, uses emulateapj.st

    Manifestation of geometric frustration on magnetic and thermodynamic properties of pyrochlores Sm2X2O7Sm_2X_2O_7 (X=Ti, Zr)

    Full text link
    We present here magnetization, specific heat and Raman studies on single-crystalline specimens of the first pyrochlore member Sm2Ti2O7Sm_2Ti_2O_7 of the rare-earth titanate series. Its analogous compound Sm2Zr2O7Sm_2Zr_2O_7 in the rare-earth zirconate series is also investigated in the polycrystalline form. The Sm spins in Sm2Ti2O7Sm_2Ti_2O_7 remain unordered down to at least T = 0.5 K. The absence of magnetic ordering is attributed to very small values of exchange (θcw 0.26K\theta_{cw} ~ -0.26 K) and dipolar interaction (μeff 0.15μB\mu_{eff} ~ 0.15 \mu_B) between the Sm3+Sm^{3+} spins in this pyrochlore. In contrast, the pyrochlore Sm2Zr2O7Sm_2Zr_2O_7 is characterized by a relatively large value of Sm-Sm spin exchange (θcw 10K\theta_{cw} ~ - 10 K); however, long-range ordering of the Sm3+Sm^{3+} spins is not established at least down to T = 0.67 K, due to frustration of the Sm3+Sm^{3+} spins on the pyrochlore lattice. The ground state of Sm3+Sm^{3+} ions in both pyrochlores is a well-isolated Kramer's doublet. The higher-lying crystal field excitations are observed in the low-frequency region of the Raman spectra of the two compounds recorded at T = 10 K. At higher temperatures, the magnetic susceptibility of Sm2Ti2O7Sm_2Ti_2O_7 shows a broad maximum at T = 140 K while that of Sm2Zr2O7Sm_2Zr_2O_7 changes monotonically. Whereas Sm2Ti2O7Sm_2Ti_2O_7 is a promising candidate for investigating spin-fluctuations on a frustrated lattice as indicated by our data, the properties of Sm2Zr2O7Sm_2Zr_2O_7 seem to conform to a conventional scenario where geometrical frustration of the spin exclude their long-range ordering.Comment: 24 pages, 6 figures, Accepted for publication in Phys. Rev.
    corecore