41 research outputs found

    Canonical description of incompressible fluid -- Dirac brackets approach

    Full text link
    We present a novel canonical description of the incompressible fluid dynamics. This description uses the dynamical constraints, in our case reflecting "incompressibility" assumption, and leads to replacement of usual hydrodynamical Poisson brackets for density and velocity fields with Dirac brackets. The resulting equations are then known nonlinear, and non-local in space, equations for incompressible fluid velocity.Comment: 7 pages, late

    No Small Hairs in Anisotropic Power-law Gauss-Bonnet Inflation

    Get PDF
    We will examine whether anisotropic hairs exist in a string-inspired scalar-Gauss-Bonnet gravity model with the absence of potential of scalar field during the inflationary phase. As a result, we are able to obtain the Bianchi type I power-law solution to this model under the assumption that the scalar field acts as the phantom field, whose kinetic is negative definite. However, the obtained anisotropic hair of this model turns out to be large, which is inconsistent with the observational data. We will therefore introduce a nontrivial coupling between scalar and vector fields such as f2(ϕ)FΌΜFΌΜf^2(\phi)F_{\mu\nu}F^{\mu\nu} into the scalar-Gauss-Bonnet model with the expectation that the anisotropic hair would be reduced to a small one. Unfortunately, the magnitude of the obtained anisotropic hair is still large. These results indicate that the scalar-Gauss-Bonnet gravity model with the absence of potential of scalar field might not be suitable to generate small anisotropic hairs during the inflationary phase

    Recursive properties of Dirac and Metriplectic Dirac brackets with Applications

    Full text link
    In this article, we prove that Dirac brackets for Hamiltonian and non-Hamiltonian constrained systems can be derived recursively. We then study the applicability of that formulation in analysis of some interesting physical models. Particular attention is paid to the feasibility of implementation code for Dirac brackets in Computer Algebra System and analytical techniques for inversion of triangular matrices.Comment: 29 pages, Latex. Extended version of the article in Physica

    A novel AhR ligand, 2AI, protects the retina from environmental stress.

    Get PDF
    Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2'-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice

    Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia.

    Get PDF
    BACKGROUND: Genetic mutations underlying familial Alzheimer\u27s disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (App RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular AÎČ content. The App DISCUSSION: Our findings demonstrate that fibrillar AÎČ in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology

    A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer's disease models

    Get PDF
    van Lengerich et al. developed a human TREM2 antibody with a transport vehicle (ATV) that improves brain exposure and biodistribution in mouse models. ATV:TREM2 promotes microglial energetic capacity and metabolism via mitochondrial pathways. Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD

    Trophic macrophages in development and disease

    Get PDF
    Specialized phagocytes are found in the most primitive multicellular organisms. Their roles in homeostasis and in distinguishing self from non-self have evolved with the complexity of organisms and their immune systems. Equally important, but often overlooked, are the roles of macrophages in tissue development. As discussed in this Review, these include functions in branching morphogenesis, neuronal patterning, angiogenesis, bone morphogenesis and the generation of adipose tissue. In each case, macrophage depletion impairs the formation of the tissue and compromises its function. I argue that in several diseases, the unrestrained acquisition of these developmental macrophage functions exacerbates pathology. For example, macrophages enhance tumour progression and metastasis by affecting tumour-cell migration and invasion, as well as angiogenesis

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS
    corecore