479 research outputs found

    Dynamics of coreless vortices and rotation-induced dissipation peak in superfluid films on rotating porous substrates

    Full text link
    We analyze dynamics of 3D coreless vortices in superfluid films covering porous substrates. The 3D vortex dynamics is derived from the 2D dynamics of the film. The motion of a 3D vortex is a sequence of jumps between neighboring substrate cells, which can be described, nevertheless, in terms of quasi-continuous motion with average vortex velocity. The vortex velocity is derived from the dissociation rate of vortex-antivortex pairs in a 2D film, which was developed in the past on the basis of the Kosterlitz-Thouless theory. The theory explains the rotation-induced dissipation peak in torsion-oscillator experiments on 4^4He films on rotating porous substrates and can be used in the analysis of other phenomena related to vortex motion in films on porous substrates.Comment: 8 pages, 3 figures submitted to Phys. Rev.

    Osmotic compression of droplets of hard rods: A computer simulation study

    Get PDF
    By means of computer simulations we study how droplets of hard, rod-like particles optimize their shape and internal structure under the influence of the osmotic compression caused by the presence of spherical particles that act as depletion agents. At sufficiently high osmotic pressures the rods that make up the drops spontaneously align to turn them into uniaxial nematic liquid crystalline droplets. The nematic droplets or "tactoids" that are formed this way are not spherical but elongated, resulting from the competition between the anisotropic surface tension and the elastic deformation of the director field. In agreement with recent theoretical predictions we find that sufficiently small tactoids have a uniform director field, whilst large ones are characterized by a bipolar director field. From the shape and director-field transformation of the droplets we are able to estimate the surface anchoring strength and an average of the elastic constants of the hard-rod nematic

    Magnetic Force Exerted by the Aharonov-Bohm Line

    Full text link
    The problem of the scattering of a charge by the Aharonov-Bohm (AB) flux line is reconsidered in terms of finite width beams. It is shown that despite the left-right symmetry in the AB scattering cross-section, the charge is scattered asymmetrically. The asymmetry (i.e. magnetic force) originates from almost forward scattering within the angular size of the incident wave. In the paraxial approximation, the real space solution to the scattering problem of a beam is found as well as the scattering S-matrix. The Boltzmann kinetics and the Landau quantization in a random AB array are considered.Comment: 5 pages, RevTeX. Discussions of paraxial approximation to the Aharonov-Bohm solution (Cornu spiral) and S-matrix, are extended. References are adde

    The vortex depinning transition in untwinned YBaCuO using complex impedance measurements

    Full text link
    We present surface impedance measurement of the vortex linear response in a large untwinned YBCO crystal. The depinning spectra obtained over a broad frequency range (100 Hz- 30 MHz) are those of a surface pinned vortex lattice with a free flux flow resistivity (two modes response). The critical current in the "Campbell" like regime and the flux flow resistivity in the dissipative regime are extracted. Those two parameters are affected by the first order transition, showing that this transition may be related to the electronic state of vortices.Comment: to be published in the proceedings of M2S RI

    Domain Walls in a Tetragonal Chiral p-Wave Superconductor

    Full text link
    Domain walls in a tetragonal chiral p-wave superconductors with broken time reversal symmetry are analyzed in the framework of the Ginsburg-Landau theory. The energy and the jump of the magnetic induction on the wall were determined for different types of walls as functions of the parameters of the Ginzburg-Landau theory and orientation of the domain wall with respect to the crystallographic axes. We discuss implications of the analysis for Sr2RuO4Sr_{2}RuO_{4}, where no stray magnetic fields from domain walls were detected experimentally.Comment: 8 pages, 2 figure

    Novel A-B type oscillations in a 2-D electron gas in inhomogenous magnetic fields

    Full text link
    We present results from a quantum and semiclassical theoretical study of the ρxy\rho_{xy} and ρxx\rho_{xx} resistivities of a high mobility 2-D electron gas in the presence of a dilute random distribution of tubes with magnetic flux Φ\Phi and radius RR, for arbitrary values of kfRk_f R and F=eΦ/hF=e\Phi/h. We report on novel Aharonov-Bohm type oscillations in ρxy\rho_{xy} and ρxx\rho_{xx}, related to degenerate quantum flux tube resonances, that satisfy the selection rule (kfR)2=4F(n+12){(k_fR)}^2=4F(n+{1\over 2}), with nn an integer. We discuss possible experimental conditions where these oscillations may be observed.Comment: 11 pages REVTE

    Alignment transition in a nematic liquid crystal due to field-induced breaking of anchoring

    Full text link
    We report on the alignment transition of a nematic liquid crystal from initially homeotropic to quasi-planar due to field-induced anchoring breaking. The initial homeotropic alignment is achieved by Langmuir-Blodgett monolayers. In this geometry the anchoring strength can be evaluated by the Frederiks transition technique. Applying an electric field above a certain threshold provokes turbulent states denoted DSM1 and DSM2. While DSM1 does not affect the anchoring, DSM2 breaks the coupling between the surface and the liquid crystal: switching off the field from a DSM2 state does not immediately restore the homeotropic alignment. Instead, we obtain a quasi-planar metastable alignment. The cell thickness dependence for the transition is related to theComment: 7 pages, LaTeX2e article, 4 figures, 7 EPS files, added references, accepted for publication in Europhysics Letter

    Computer simulations of nematic drops: Coupling between drop shape and nematic order

    Get PDF
    We perform Monte Carlo computer simulations of nematic drops in equilibrium with their vapor using a Gay-Berne interaction between the rod-like molecules. To generate the drops, we initially perform NPT simulations close to the nematic-vapor coexistence region, allow the system to equilibrate and subsequently induce a sudden volume expansion, followed with NVT simulations. The resultant drops coexist with their vapor and are generally not spherical but elongated, have the rodlike particles tangentially aligned at the surface and an overall nematic orientation along the main axis of the drop. We find that the drop eccentricity increases with increasing molecular elongation, κ. For small κ the nematic texture in the drop is bipolar with two surface defects, or boojums, maximizing their distance along this same axis. For sufficiently high κ, the shape of the drop becomes singular in the vicinity of the defects, and there is a crossover to an almost homogeneous texture; this reflects a transition from a spheroidal to a spindle-like dro

    On Multistep Bose-Einstein Condensation in Anisotropic Traps

    Get PDF
    Multistep Bose-Einstein condensation of an ideal Bose gas in anisotropic harmonic atom traps is studied. In the presence of strong anisotropy realized by the different trap frequency in each direction, finite size effect dictates a series of dimensional crossovers into lower-dimensional excitations. Two-step condensation and the dynamical reduction of the effective dimension can appear in three separate steps. When the multistep behavior occurs, the occupation number of atoms excited in each dimension is shown to behave similarly as a function of the temperature.Comment: 26 pages, 7 figures, revised version, to appear in Jour. Phys.
    corecore