19 research outputs found

    Dolphin Sounds-Inspired Covert Underwater Acoustic Communication and Micro-Modem

    No full text
    A novel portable underwater acoustic modem is proposed in this paper for covert communication between divers or underwater unmanned vehicles (UUVs) and divers at a short distance. For the first time, real dolphin calls are used in the modem to realize biologically inspired Covert Underwater Acoustic Communication (CUAC). A variety of dolphin whistles and clicks stored in an SD card inside the modem helps to realize different biomimetic CUAC algorithms based on the specified covert scenario. In this paper, the information is conveyed during the time interval between dolphin clicks. TMS320C6748 and TLV320AIC3106 are the core processors used in our unique modem for fast digital processing and interconnection with other terminals or sensors. Simulation results show that the bit error rate (BER) of the CUAC algorithm is less than 10 − 5 when the signal to noise ratio is over ‒5 dB. The modem was tested in an underwater pool, and a data rate of 27.1 bits per second at a distance of 10 m was achieved

    Modulation Mode Recognition Method of Non-Cooperative Underwater Acoustic Communication Signal Based on Spectral Peak Feature Extraction and Random Forest

    No full text
    The modulation mode recognition of non-cooperative underwater acoustic (UWA) communication signal faces great challenges due to the influence of the UWA channel and the demand for efficient recognition. This work proposes a recognition method for UWA orthogonal frequency division multiplexing (OFDM), binary frequency shift keying (2FSK), four-frequency shift keying (4FSK), and eight-frequency shift keying (8FSK) by using spectral peak feature extraction combined with random forest (RF). First, a new spectral peak feature extraction method is proposed. In this method, pre-processing, waveform optimization, and feature extraction are used to ensure that the extracted feature maintains high robustness in the UWA channel. Then, we designed an RF classifier that can meet the demand for high-efficiency recognition and good performance. Finally, simulation and experimental results verified the feasibility of the recognition method

    Modulation Mode Recognition Method of Non-Cooperative Underwater Acoustic Communication Signal Based on Spectral Peak Feature Extraction and Random Forest

    No full text
    The modulation mode recognition of non-cooperative underwater acoustic (UWA) communication signal faces great challenges due to the influence of the UWA channel and the demand for efficient recognition. This work proposes a recognition method for UWA orthogonal frequency division multiplexing (OFDM), binary frequency shift keying (2FSK), four-frequency shift keying (4FSK), and eight-frequency shift keying (8FSK) by using spectral peak feature extraction combined with random forest (RF). First, a new spectral peak feature extraction method is proposed. In this method, pre-processing, waveform optimization, and feature extraction are used to ensure that the extracted feature maintains high robustness in the UWA channel. Then, we designed an RF classifier that can meet the demand for high-efficiency recognition and good performance. Finally, simulation and experimental results verified the feasibility of the recognition method

    Symmetric Connectivity of Underwater Acoustic Sensor Networks Based on Multi-Modal Directional Transducer

    No full text
    Topology control is one of the most essential technologies in wireless sensor networks (WSNs); it constructs networks with certain characteristics through the usage of some approaches, such as power control and channel assignment, thereby reducing the inter-nodes interference and the energy consumption of the network. It is closely related to the efficiency of upper layer protocols, especially MAC and routing protocols, which are the same as underwater acoustic sensor networks (UASNs). Directional antenna technology (directional transducer in UASNs) has great advantages in minimizing interference and conserving energy by restraining the beamforming range. It enables nodes to communicate with only intended neighbors; nevertheless, additional problems emerge, such as how to guarantee the connectivity of the network. This paper focuses on the connectivity problem of UASNs equipped with tri-modal directional transducers, where the orientation of a transducer is stabilized after the network is set up. To efficiently minimize the total network energy consumption under constraint of connectivity, the problem is formulated to a minimum network cost transducer orientation (MNCTO) problem and is provided a reduction from the Hamiltonian path problem in hexagonal grid graphs (HPHGG), which is proved to be NP-complete. Furthermore, a heuristic greedy algorithm is proposed for MNCTO. The simulation evaluation results in a contrast with its omni-mode peer, showing that the proposed algorithm greatly reduces the network energy consumption by up to nearly half on the premise of satisfying connectivity

    Blind Modulation Identification of Underwater Acoustic MPSK Using Sparse Bayesian Learning and Expectation Maximization

    No full text
    This paper presents a likelihood-based algorithm for identifying different phase shift keying (PSK) modulations, i.e., BPSK, QPSK, and 8PSK. This algorithm selects the modulation type that maximizes a loglikelihood function that is based on the known original constellation associated with the constellation of the received signals for the candidate modulation types. However, there are two problems in non-cooperative underwater acoustic Multiple Phase Shift Keying (MPSK) modulation identification based on the likelihood method. One is the original constellation, which as prior information is unknown. The other is the underwater acoustic multipath channel makes the constellation distort seriously. In this paper, we solved these problems by combining sparse bayesian learning (SBL) with expectation maximization (EM). The specific steps are as follows. Firstly, blind channel equalization can be achieved by channel impulse response (CIR), which is estimated by sparse bayesian learning in single input multi output (SIMO) underwater acoustic channel. Subsequently, we used expectation maximization to compensate amplitude attenuation and phase offset, as the original constellation of MPSK is unknown. Finally, modulation can be successfully identified by the Quasi Hybrid Likelihood Ratio Test (QHLRT). The simulation results show that the channel estimation method based on SBL can eliminate the influence of channel effectively, and the EM algorithm can make the received constellation converge to the preset constellation in the case of unknown original transmit constellation, which effectively solves these two problems. We use the proposed SBL-EM-QHLRT method to achieve an identification rate of more than 95% in underwater acoustic multipath channels with Signal to Noise Ratio (SNR) higher than 15 dB, which provides a new idea for modulation identification of non-cooperative underwater acoustic MPSK

    Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication

    No full text
    To improve the throughput of underwater acoustic (UWA) networking, the In-band full-duplex (IBFD) communication is one of the most vital pieces of research. The major drawback of IBFD-UWA communication is Self-Interference (SI). This paper presents a digital SI cancellation algorithm for asynchronous IBFD-UWA communication system. We focus on two issues: one is asynchronous communication dissimilar to IBFD radio communication, the other is nonlinear distortion caused by power amplifier (PA). First, we discuss asynchronous IBFD-UWA signal model with the nonlinear distortion of PA. Then, we design a scheme for asynchronous IBFD-UWA communication utilizing the non-overlapping region between SI and intended signal to estimate the nonlinear SI channel. To cancel the nonlinear distortion caused by PA, we propose an Over-Parameterization based Recursive Least Squares (RLS) algorithm (OPRLS) to estimate the nonlinear SI channel. Furthermore, we present the OPRLS with a sparse constraint to estimate the SI channel, which reduces the requirement of the length of the non-overlapping region. Finally, we verify our concept through simulation and the pool experiment. Results demonstrate that the proposed digital SI cancellation scheme can cancel SI efficiently

    Symmetry Oriented Covert Acoustic Communication by Mimicking Humpback Whale Song

    No full text
    To meet the increasing demand of covert underwater acoustic communication, biologically inspired mimicry communication watermarking the data in symmetrical humpback whale song is presented. Mimicry is an entirely different approach from traditional covert communication where data are transmitted by spreading the waveform at a low signal to noise ratio. In this innovative technique, the carrier signal is imitated symmetrical to the ocean background noise, which can be shipping noise, anthropological noise, or the vocals emitted by sea animals. The eavesdropper can detect the communication signal, but will assume it to be real ocean noise due to its symmetry. It excludes the mimicked signal from recognition, which makes the communication covert. In this research, we watermarked the covert information in humpback whale song using discrete cosine transform in the frequency domain. The mimicked symmetrical signal provided excellent imperceptibility with the real song and an outstanding camouflage effect was calculated. We validated the novel concept by simulation and underwater tank experiment. 10−4 BER was achieved in the underwater tank experiment, which was diminished to zero error by using matching pursuit estimation and virtual time reversal equalization. This novel bionic covert communication technique is feasible for clandestine underwater acoustic communication in the presence of an eavesdropper with better imperceptibility
    corecore