34,328 research outputs found

    Pulsar Velocity with Three-Neutrino Oscillations in Non-adiabatic Processes

    Full text link
    We have studied the position dependence of neutrino energy on the Kusenko-Segr\`{e} mechanism as an explanation of the proper motion of pulsars. The mechanism is also examined in three-generation mixing of neutrinos and in a non-adiabatic case. The position dependence of neutrino energy requires the higher value of magnetic field such as B3×1015B\sim 3\times 10^{15} Gauss in order to explain the observed proper motion of pulsars. It is shown that possible non-adiabatic processes decrease the neutrino momentum asymmetry, whereas an excess of electron neutrino flux over other flavor neutrino fluxes increases the neutrino momentum asymmetry. It is also shown that a general treatment with all three neutrinos does not modify the result of the two generation treatment if the standard neutrino mass hierarchy is assumed.Comment: 8 pages, REVTEX, no figure

    Advanced Quantizer Designs for FDD-Based FD-MIMO Systems Using Uniform Planar Arrays

    Full text link
    Massive multiple-input multiple-output (MIMO) systems, which utilize a large number of antennas at the base station, are expected to enhance network throughput by enabling improved multiuser MIMO techniques. To deploy many antennas in reasonable form factors, base stations are expected to employ antenna arrays in both horizontal and vertical dimensions, which is known as full-dimension (FD) MIMO. The most popular two-dimensional array is the uniform planar array (UPA), where antennas are placed in a grid pattern. To exploit the full benefit of massive MIMO in frequency division duplexing (FDD), the downlink channel state information (CSI) should be estimated, quantized, and fed back from the receiver to the transmitter. However, it is difficult to accurately quantize the channel in a computationally efficient manner due to the high dimensionality of the massive MIMO channel. In this paper, we develop both narrowband and wideband CSI quantizers for FD-MIMO taking the properties of realistic channels and the UPA into consideration. To improve quantization quality, we focus on not only quantizing dominant radio paths in the channel, but also combining the quantized beams. We also develop a hierarchical beam search approach, which scans both vertical and horizontal domains jointly with moderate computational complexity. Numerical simulations verify that the performance of the proposed quantizers is better than that of previous CSI quantization techniques.Comment: 15 pages, 6 figure

    DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization.

    Get PDF
    DNA has been employed to either store digital information or to perform parallel molecular computing. Relatively unexplored is the ability to combine DNA-based memory and logical operations in a single platform. Here, we show a DNA tri-level cell non-volatile memory system capable of parallel random-access writing of memory and bit shifting operations. A microchip with an array of individually addressable electrodes was employed to enable random access of the memory cells using electric fields. Three segments on a DNA template molecule were used to encode three data bits. Rapid writing of data bits was enabled by electric field-induced hybridization of fluorescently labeled complementary probes and the data bits were read by fluorescence imaging. We demonstrated the rapid parallel writing and reading of 8 (23) combinations of 3-bit memory data and bit shifting operations by electric field-induced strand displacement. Our system may find potential applications in DNA-based memory and computations

    Electronic structures of Zn1x_{1-x}Cox_xO using photoemission and x-ray absorption spectroscopy

    Full text link
    Electronic structures of Zn1x_{1-x}Cox_xO have been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Co 3d states are found to lie near the top of the O 2p2p valence band, with a peak around 3\sim 3 eV binding energy. The Co 2p2p XAS spectrum provides evidence that the Co ions in Zn1x_{1-x}Cox_{x}O are in the divalent Co2+^{2+} (d7d^7) states under the tetrahedral symmetry. Our finding indicates that the properly substituted Co ions for Zn sites will not produce the diluted ferromagnetic semiconductor property.Comment: 3 pages, 2 figure

    The Factors and Features of Museum Fatigue in Science Centres Felt by Korean Students

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recordOne of the objectives of science education in science centres has been the enhancement of interest in science. However, museum fatigue has a negative impact on interest. Museum fatigue has been described as physical tiredness or a decrease in visitors’ interest in a museum. The learning experience of students in science centres is also influenced by museum fatigue. The purpose of this study is to identify the phenomena of museum fatigue in science centres and to identity how it is manifested. First, we identified the factors causing museum fatigue in science centres using the data from an open-ended questionnaire which was given to 597 primary, middle and high school students in South Korea. From the responses to the questionnaire, 50 factors causing museum fatigue in science centres were identified. A second Likert-type questionnaire with the 50 factors of museum fatigue in science centres was administered to 610 primary, middle and high school students in South Korea. Using reliability and factor analyses, we developed a framework of the factors causing museum fatigue in science centres, which consists of three contexts, 12 categories and 50 factors. Secondly, through statistical analyses including T test and ANOVA analysis, the features of students’ museum fatigue in science centres were analysed and compared regarding student gender, school level, interest in science, grade of school science, the number of visits, and type of visit. The results, which were found to be statistically significant, are reported and discussed. The findings of this study are intended to serve for a deeper understanding and practical improvement of science learning in science centres

    Gravitational Effects on the Neutrino Oscillation

    Get PDF
    The propagation of neutrinos in a gravitational field is studied. A method of calculating a covariant quantum-mechanical phase in a curved space-time is presented. The result is used to calculate gravitational effects on the neutrino oscillation in the presence of a gravitational field. We restrict our discussion to the case of the Schwartzschild metric. Specifically, the cases of the radial propagation and the non-radial propagation are considered. A possible application to gravitational lensing of neutrinos is also suggested.Comment: 15 pages, RevTex, No figures. Minor modifications and some typos correcte

    Electron Removal Self Energy and its application to Ca2CuO2Cl2

    Full text link
    We propose using the self energy defined for the electron removal Green's function. Starting from the electron removal Green's function, we obtained expressions for the removal self energy Sigma^ER (k,omega) that are applicable for non-quasiparticle photoemission spectral functions from a single band system. Our method does not assume momentum independence and produces the self energy in the full k-omega space. The method is applied to the angle resolved photoemission from Ca_2CuO_2Cl_2 and the result is found to be compatible with the self energy value from the peak width of sharp features. The self energy is found to be only weakly k-dependent. In addition, the Im Sigma shows a maximum at around 1 eV where the high energy kink is located.Comment: 5 pages, 3 figure
    corecore