13 research outputs found

    Photo-excited Carrier Dynamics and Impact Excitation Cascade in Graphene

    Full text link
    Photo-excitation in solids can trigger a cascade in which multiple particle-hole excitations are generated. We analyze the carrier multiplication cascade of impact excitation processes in graphene and show that the number of pair excitations has a strong dependence on doping, which makes carrier multiplication gate-tunable. We also predict that the number of excited pairs as well as the characteristic time of the cascade scale linearly with photo-excitation energy. These dependences, as well as sharply peaked angular distribution of pair excitations, provide clear experimental signatures of carrier multiplication

    Bipartite Fluctuations as a Probe of Many-Body Entanglement

    Full text link
    We investigate in detail the behavior of the bipartite fluctuations of particle number N^\hat{N} and spin S^z\hat{S}^z in many-body quantum systems, focusing on systems where such U(1) charges are both conserved and fluctuate within subsystems due to exchange of charges between subsystems. We propose that the bipartite fluctuations are an effective tool for studying many-body physics, particularly its entanglement properties, in the same way that noise and Full Counting Statistics have been used in mesoscopic transport and cold atomic gases. For systems that can be mapped to a problem of non-interacting fermions we show that the fluctuations and higher-order cumulants fully encode the information needed to determine the entanglement entropy as well as the full entanglement spectrum through the R\'{e}nyi entropies. In this connection we derive a simple formula that explicitly relates the eigenvalues of the reduced density matrix to the R\'{e}nyi entropies of integer order for any finite density matrix. In other systems, particularly in one dimension, the fluctuations are in many ways similar but not equivalent to the entanglement entropy. Fluctuations are tractable analytically, computable numerically in both density matrix renormalization group and quantum Monte Carlo calculations, and in principle accessible in condensed matter and cold atom experiments. In the context of quantum point contacts, measurement of the second charge cumulant showing a logarithmic dependence on time would constitute a strong indication of many-body entanglement.Comment: 30 pages + 25 pages supplementary materia

    Detecting Topological Currents in Graphene Superlattices

    Get PDF
    Topological materials may exhibit Hall-like currents flowing transversely to the applied electric field even in the absence of a magnetic field. In graphene superlattices, which have broken inversion symmetry, topological currents originating from graphene's two valleys are predicted to flow in opposite directions and combine to produce long-range charge neutral flow. We observe this effect as a nonlocal voltage at zero magnetic field in a narrow energy range near Dirac points at distances as large as several microns away from the nominal current path. Locally, topological currents are comparable in strength to the applied current, indicating large valley-Hall angles. The long-range character of topological currents and their transistor-like control by gate voltage can be exploited for information processing based on the valley degrees of freedom.Comment: 19 pgs, 9 fg

    Plasmons in layered structures including graphene

    Full text link
    We investigate the optical properties of layered structures with graphene at the interface for arbitrary linear polarization at finite temperature including full retardation by working in the Weyl gauge. As a special case, we obtain the full response and the related dielectric function of a layered structure with two interfaces. We apply our results to discuss the longitudinal plasmon spectrum of several single and double layer devices such as systems with finite and zero electronic densities. We further show that a nonhomogeneous dielectric background can shift the relative weight of the in-phase and out-of-phase mode and discuss how the plasmonic mode of the upper layer can be tuned into an acoustic mode with specific sound velocity.Comment: 18 pages, 6 figure

    Photoexcitation cascade and multiple hot-carrier generation in graphene

    Get PDF
    The conversion of light into free electron–hole pairs constitutes the key process in the fields of photodetection and photovoltaics. The efficiency of this process depends on the competition of different relaxation pathways and can be greatly enhanced when photoexcited carriers do not lose energy as heat, but instead transfer their excess energy into the production of additional electron–hole pairs through carrier–carrier scattering processes. Here we use optical pump–terahertz probe measurements to probe different pathways contributing to the ultrafast energy relaxation of photoexcited carriers. Our results indicate that carrier–carrier scattering is highly efficient, prevailing over optical-phonon emission in a wide range of photon wavelengths and leading to the production of secondary hot electrons originating from the conduction band. As hot electrons in graphene can drive currents, multiple hot-carrier generation makes graphene a promising material for highly efficient broadband extraction of light energy into electronic degrees of freedom, enabling high-efficiency optoelectronic applications.United States. Office of Naval Research (Grant N00014-09-1-0724

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Hall Drag and Magnetodrag in Graphene

    No full text
    Massless Dirac fermions in graphene at charge neutrality form a strongly interacting system in which both charged and neutral (energy) modes play an important role. These modes are essentially decoupled in the absence of a magnetic field, but become strongly coupled when the field is applied. We show that this regime is characterized by strong magnetodrag and Hall drag, originating from long-range energy currents and spatial temperature gradients. The energy-driven effects arise in a wide temperature range, and feature an unusually strong dependence on field and carrier density. We argue that this mechanism accounts for the recently observed giant magnetodrag and Hall drag occurring at classically weak fields

    Coulomb Drag Mechanisms in Graphene

    No full text
    Recent measurements revealed an anomalous Coulomb drag in graphene, hinting at new physics at charge neutrality. The anomalous drag is explained by a new mechanism based on energy transport, which involves interlayer energy transfer, coupled to charge flow via lateral heat currents and thermopower. The old and new drag mechanisms are governed by distinct physical effects, resulting in starkly different behavior, in particular for drag magnitude and sign near charge neutrality. The new mechanism explains the giant enhancement of drag near charge neutrality, as well as its sign and anomalous sensitivity to the magnetic field. Under realistic conditions, energy transport dominates in a wide temperature range, giving rise to a universal value of drag which is essentially independent of the electron–electron interaction strength

    Photoexcitation cascade and multiple hot-carrier generation in graphene

    No full text
    The conversion of light into free electron-hole pairs constitutes the key process in the fields of photodetection and photovoltaics. The efficiency of this process depends on the competition of different relaxation pathways and can be greatly enhanced when photoexcited carriers do not lose energy as heat, but instead transfer their excess energy into the production of additional electron-hole pairs through carrier-carrier scattering processes. Here we use optical pump-terahertz probe measurements to probe different pathways contributing to the ultrafast energy relaxation of photoexcited carriers. Our results indicate that carrier-carrier scattering is highly efficient, prevailing over optical-phonon emission in a wide range of photon wavelengths and leading to the production of secondary hot electrons originating from the conduction band. As hot electrons in graphene can drive currents, multiple hot-carrier generation makes graphene a promising material for highly efficient broadband extraction of light energy into electronic degrees of freedom, enabling high-efficiency optoelectronic applications.United States. Office of Naval Research (Grant N00014-09-1-0724
    corecore