28 research outputs found

    AVA-AVD: Audio-Visual Speaker Diarization in the Wild

    Full text link
    Audio-visual speaker diarization aims at detecting "who spoke when" using both auditory and visual signals. Existing audio-visual diarization datasets are mainly focused on indoor environments like meeting rooms or news studios, which are quite different from in-the-wild videos in many scenarios such as movies, documentaries, and audience sitcoms. To develop diarization methods for these challenging videos, we create the AVA Audio-Visual Diarization (AVA-AVD) dataset. Our experiments demonstrate that adding AVA-AVD into training set can produce significantly better diarization models for in-the-wild videos despite that the data is relatively small. Moreover, this benchmark is challenging due to the diverse scenes, complicated acoustic conditions, and completely off-screen speakers. As a first step towards addressing the challenges, we design the Audio-Visual Relation Network (AVR-Net) which introduces a simple yet effective modality mask to capture discriminative information based on face visibility. Experiments show that our method not only can outperform state-of-the-art methods but is more robust as varying the ratio of off-screen speakers. Our data and code has been made publicly available at https://github.com/showlab/AVA-AVD.Comment: ACMMM 202

    The complete chloroplast genome sequence of Ardisia crispa Thunb.

    No full text
    Ardisia crispa (Thunb.) A. DC. belongs to the genus Ardisia (Myrsinaceae). It is a traditional medicinal plant widely used to treat inflammatory-related diseases in southern China. Here, we provide the complete chloroplast genome of A. crispa from Laibin, Guangxi, PR China using Illumina high-throughput sequencing approach. The total length of the chloroplast genome is 156,709 bp, including a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeats IRa and IRb regions which are separated by the LSC and SSC, with lengths of 86,301 bp, 18,411 bp, and 25,999 bp, respectively. In general, 132 genes were identified, including 93 protein-coding genes, 31 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. The overall GC content is 47.82%. Phylogenetic analysis revealed that A. crispa is close to congeneric species A. mamillata

    The complete chloroplast genome sequence of Clematis chinensis Osbeck

    No full text
    Clematis chinensis Osbeck is an important medicinal and edible plant. The complete chloroplast genome of C. chinensis Osbeck was constructed and annotated for the first time in this study. Full length of the chloroplast genome of C. chinensis Osbeck is 159,647 bp, with a large single-copy (LSC) region of 86,301 bp, a small single-copy (SSC) region of 79,536 bp, and a pair of inverted repeats IRa and IRb regions of 31,039 bp. The result of the gene annotation identified the 135 genes in the chloroplast genome, including 91 protein-coding genes, 36 tRNA genes, and eight rRNA genes. The total amount of GC is 47.82%. In the phylogenetic analysis, C. chinensis Osbeck showed the closest relationship with Clematis uncinata

    Structural design and performance study of permanent magnet safety coupling based on magnetorheological transmission technology

    No full text
    Based on magnetorheological transmission technology, a design for a permanent magnet safety coupling is proposed. Firstly, the structure scheme of the coupling is designed in detail, and its working principle and process are explained; Additionally, the influence of coupling structural parameters on magnetic field strength is studied by ANSYS, and the coupling’s structural parameters are optimized; Finally, the prototype of the permanent magnet magnetorheological fluid coupling is tested for no-load characteristics and torque regulation characteristics through the preparation of magnetorheological fluid (MRF) and the construction of an experimental platform, the experimental results demonstrated that the prototype effectively transmits torque, and the no-load torque increases as the speed increases, at a motor speed of 400 r/min, the experimental prototype achieves a maximum no-load torque of 2.6 N.m; Under specific conditions of magnetic field strength and volume ratio, the torque transmitted by the coupling increases with the volume, for instance, when the volume of MRF is 50 mL and a motor speed of 600 r/min, the experimental prototype achieves a maximum torque value of 8.7 N.m, additionally, when the volume is constant, the torque transmitted by the experimental prototype remains basically unchanged with the change of slip speed, showing the characteristic of constant torque, this study offers theoretical and practical insights for the design and experimental analysis of similar products

    A SnRK1- Zm

    No full text
    corecore