637 research outputs found
Picosecond Time-Resolved Cathodoluminescence to Probe Exciton Dynamics in α-Plane (Al,Ga)N/GaN Quantum Wells
Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7-August 11, 201
Biosynthesis of Mitochondrial Porin and Insertion into the Outer Mitochondrial Membrane of Neuruspora crassa
Mitochondrial porin, the major protein of the outer mitochondrial membrane is synthesized by free cytoplasmic polysomes. The apparent molecular weight of the porin synthesized in homologous or heterologous cell-free systems is the same as that of the mature porin. Transfer in vitro of mitochondrial porin from the cytosolic fraction into the outer membrane of mitochondria could be demonstrated. Before membrane insertion, mitochondrial porin is highly sensitive to added proteinase; afterwards it is strongly protected. Binding of the precursor form to mitochondria occurs at 4°C and appears to precede insertion into the membrane. Unlike transfer of many precursor proteins into or across the inner mitochondrial membrane, assembly of the porin is not dependent on an electrical potential across the inner membrane
Influence of Impact Parameter on Thermal Description of Relativistic Heavy Ion Collisions at GSI/SIS
Attention is drawn to the role played by the size of the system in the
thermodynamic analysis of particle yields in relativistic heavy ion collisions
at SIS energies. This manifests itself in the non-linear dependence of K+ and
K- yields in collisions at 1 -- 2 A.GeV on the number of participants. It
is shown that this dependence can be quantitatively well described in terms of
a thermal model with a canonical strangeness conservation. The measured
particle multiplicity ratios (pi+/p, pi-/pi+, d/p, K+/pi+ and K+/K- but not
eta/pi0) in central Au-Au and Ni-Ni collisions at 0.8 -- 2.0 A.GeV are also
explained in the context of a thermal model with a common freeze-out
temperature and chemical potential. Including the concept of collective flow a
consistent picture of particle energy distributions is derived with the flow
velocity being strongly impact-parameter dependent.Comment: revtex, 20 figure
The Vector Probe in Heavy-Ion Reactions
We review essential elements in using the channel as a probe for
hot and dense matter as produced in (ultra-) relativistic collisions of heavy
nuclei. The uniqueness of the vector channel resides in the fact that it
directly couples to photons, both real and virtual (dileptons), enabling the
study of thermal radiation and in-medium effects on both light () and heavy () vector mesons. We emphasize the importance
of interrelations between photons and dileptons, and characterize relevant
energy/mass regimes through connections to Quark-Gluon-Plasma emission and
chiral symmetry restoration. Based on critical analysis of our current
understanding of data from fixed-target energies, we identify open key
questions to be addressed.Comment: Invited Talk at the Hot Quarks 2004 Workshop, July 18-24, 2004 (Taos
Valley, NM, USA), 15 pages latex incl 14 figs and iop style files, to appear
in the proceeding
Novel Picosecond Time-Resolved Cathodoluminescence to Probe Exciton Recombination Dynamics in GaN and GaN Based Heterostructures
Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 - August 5, 201
J/psi azimuthal anisotropy relative to the reaction plane in Pb-Pb collisions at 158 GeV per nucleon
The J/ azimuthal distribution relative to the reaction plane has been
measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various
physical mechanisms related to charmonium dissociation in the medium created in
the heavy ion collision are expected to introduce an anisotropy in the
azimuthal distribution of the observed J/ mesons at SPS energies. Hence,
the measurement of J/ elliptic anisotropy, quantified by the Fourier
coefficient v of the J/ azimuthal distribution relative to the
reaction plane, is an important tool to constrain theoretical models aimed at
explaining the anomalous J/ suppression observed in Pb-Pb collisions. We
present the measured J/ yields in different bins of azimuthal angle
relative to the reaction plane, as well as the resulting values of the Fourier
coefficient v as a function of the collision centrality and of the
J/ transverse momentum. The reaction plane has been estimated from the
azimuthal distribution of the neutral transverse energy detected in an
electromagnetic calorimeter. The analysis has been performed on a data sample
of about 100 000 events, distributed in five centrality or p
sub-samples. The extracted v values are significantly larger than zero
for non-central collisions and are seen to increase with p.Comment: proceedings of HP08 conference corrected a typo in one equatio
NA60 results on spectra and the spectral function in In-In collisions
The NA60 experiment at the CERN SPS has studied low-mass muon pairs in 158
AGeV In-In collisions. A strong excess of pairs is observed above the yield
expected from neutral meson decays. The unprecedented sample size of close to
400K events and the good mass resolution of about 2% have made it possible to
isolate the excess by subtraction of the decay sources (keeping the ).
The shape of the resulting mass spectrum exhibits considerable broadening, but
essentially no shift in mass. The acceptance-corrected transverse-momentum
spectra have a shape atypical for radial flow and show a significant mass
dependence, pointing to different sources in different mass regions.Comment: 4 pages, 4 figures, Quark Matter 2006 conference proceeding
A new measurement of J/psi suppression in Pb-Pb collisions at 158 GeV per nucleon
We present a new measurement of J/psi production in Pb-Pb collisions at 158
GeV/nucleon, from the data sample collected in year 2000 by the NA50
Collaboration, under improved experimental conditions with respect to previous
years. With the target system placed in vacuum, the setup was better adapted to
study, in particular, the most peripheral nuclear collisions with unprecedented
accuracy. The analysis of this data sample shows that the (J/psi)/Drell-Yan
cross-sections ratio measured in the most peripheral Pb-Pb interactions is in
good agreement with the nuclear absorption pattern extrapolated from the
studies of proton-nucleus collisions. Furthermore, this new measurement
confirms our previous observation that the (J/psi)/Drell-Yan cross-sections
ratio departs from the normal nuclear absorption pattern for semi-central Pb-Pb
collisions and that this ratio persistently decreases up to the most central
collisions.Comment: 19 pages, 10 figures. Submitted to Eur. Phys. J.
- …