637 research outputs found

    Picosecond Time-Resolved Cathodoluminescence to Probe Exciton Dynamics in α-Plane (Al,Ga)N/GaN Quantum Wells

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7-August 11, 201

    Biosynthesis of Mitochondrial Porin and Insertion into the Outer Mitochondrial Membrane of Neuruspora crassa

    Get PDF
    Mitochondrial porin, the major protein of the outer mitochondrial membrane is synthesized by free cytoplasmic polysomes. The apparent molecular weight of the porin synthesized in homologous or heterologous cell-free systems is the same as that of the mature porin. Transfer in vitro of mitochondrial porin from the cytosolic fraction into the outer membrane of mitochondria could be demonstrated. Before membrane insertion, mitochondrial porin is highly sensitive to added proteinase; afterwards it is strongly protected. Binding of the precursor form to mitochondria occurs at 4°C and appears to precede insertion into the membrane. Unlike transfer of many precursor proteins into or across the inner mitochondrial membrane, assembly of the porin is not dependent on an electrical potential across the inner membrane

    Influence of Impact Parameter on Thermal Description of Relativistic Heavy Ion Collisions at GSI/SIS

    Get PDF
    Attention is drawn to the role played by the size of the system in the thermodynamic analysis of particle yields in relativistic heavy ion collisions at SIS energies. This manifests itself in the non-linear dependence of K+ and K- yields in AAAA collisions at 1 -- 2 A.GeV on the number of participants. It is shown that this dependence can be quantitatively well described in terms of a thermal model with a canonical strangeness conservation. The measured particle multiplicity ratios (pi+/p, pi-/pi+, d/p, K+/pi+ and K+/K- but not eta/pi0) in central Au-Au and Ni-Ni collisions at 0.8 -- 2.0 A.GeV are also explained in the context of a thermal model with a common freeze-out temperature and chemical potential. Including the concept of collective flow a consistent picture of particle energy distributions is derived with the flow velocity being strongly impact-parameter dependent.Comment: revtex, 20 figure

    The Vector Probe in Heavy-Ion Reactions

    Full text link
    We review essential elements in using the JP=1J^P=1^- channel as a probe for hot and dense matter as produced in (ultra-) relativistic collisions of heavy nuclei. The uniqueness of the vector channel resides in the fact that it directly couples to photons, both real and virtual (dileptons), enabling the study of thermal radiation and in-medium effects on both light (ρ,ω,ϕ\rho, \omega, \phi) and heavy (Ψ,Υ\Psi, \Upsilon) vector mesons. We emphasize the importance of interrelations between photons and dileptons, and characterize relevant energy/mass regimes through connections to Quark-Gluon-Plasma emission and chiral symmetry restoration. Based on critical analysis of our current understanding of data from fixed-target energies, we identify open key questions to be addressed.Comment: Invited Talk at the Hot Quarks 2004 Workshop, July 18-24, 2004 (Taos Valley, NM, USA), 15 pages latex incl 14 figs and iop style files, to appear in the proceeding

    Novel Picosecond Time-Resolved Cathodoluminescence to Probe Exciton Recombination Dynamics in GaN and GaN Based Heterostructures

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 - August 5, 201

    J/psi azimuthal anisotropy relative to the reaction plane in Pb-Pb collisions at 158 GeV per nucleon

    Get PDF
    The J/ψ\psi azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/ψ\psi mesons at SPS energies. Hence, the measurement of J/ψ\psi elliptic anisotropy, quantified by the Fourier coefficient v2_2 of the J/ψ\psi azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/ψ\psi suppression observed in Pb-Pb collisions. We present the measured J/ψ\psi yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v2_{2} as a function of the collision centrality and of the J/ψ\psi transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the neutral transverse energy detected in an electromagnetic calorimeter. The analysis has been performed on a data sample of about 100 000 events, distributed in five centrality or pT_{\rm T} sub-samples. The extracted v2_{2} values are significantly larger than zero for non-central collisions and are seen to increase with pT_{\rm T}.Comment: proceedings of HP08 conference corrected a typo in one equatio

    NA60 results on pTp_T spectra and the ρ\rho spectral function in In-In collisions

    Get PDF
    The NA60 experiment at the CERN SPS has studied low-mass muon pairs in 158 AGeV In-In collisions. A strong excess of pairs is observed above the yield expected from neutral meson decays. The unprecedented sample size of close to 400K events and the good mass resolution of about 2% have made it possible to isolate the excess by subtraction of the decay sources (keeping the ρ\rho). The shape of the resulting mass spectrum exhibits considerable broadening, but essentially no shift in mass. The acceptance-corrected transverse-momentum spectra have a shape atypical for radial flow and show a significant mass dependence, pointing to different sources in different mass regions.Comment: 4 pages, 4 figures, Quark Matter 2006 conference proceeding

    A new measurement of J/psi suppression in Pb-Pb collisions at 158 GeV per nucleon

    Full text link
    We present a new measurement of J/psi production in Pb-Pb collisions at 158 GeV/nucleon, from the data sample collected in year 2000 by the NA50 Collaboration, under improved experimental conditions with respect to previous years. With the target system placed in vacuum, the setup was better adapted to study, in particular, the most peripheral nuclear collisions with unprecedented accuracy. The analysis of this data sample shows that the (J/psi)/Drell-Yan cross-sections ratio measured in the most peripheral Pb-Pb interactions is in good agreement with the nuclear absorption pattern extrapolated from the studies of proton-nucleus collisions. Furthermore, this new measurement confirms our previous observation that the (J/psi)/Drell-Yan cross-sections ratio departs from the normal nuclear absorption pattern for semi-central Pb-Pb collisions and that this ratio persistently decreases up to the most central collisions.Comment: 19 pages, 10 figures. Submitted to Eur. Phys. J.
    corecore