11 research outputs found

    Not Available

    No full text
    Not AvailableFoot-and-mouth disease (FMD) is a transboundary animal disease caused by foot-and-mouth disease virus. In India, systematic preventive vaccination using inactivated trivalent (O, A and Asia 1) vaccine is the strategy being adopted to control FMD. The use of non-structural protein (NSP)-contaminated inactivated vaccine raises concerns over differentiation of infected and vaccinated animals (DIVA) by NSP based immunoassays. However, 2C being a membrane associated protein usually remain absent in vaccine formulations and thus, anti-2C response is one of the most reliable indicator of the FMDV infection. In this study, 34 amino acids from N-terminus of 2C protein were removed to eliminate membrane-binding amphipathic helicase activity for the expression of recombinant protein in soluble form. Truncated 2C (2Ct) was utilized for development of an indirect ELISA (I-ELISA) for bovine and the developed 2Ct I-ELISA was validated using a panel constituting of serum of naïve, vaccinated and infected animals. The assay was compared with the in-house r3AB3 I-ELISA and the overall concordance was 85.31%. The diagnostic sensitivity and specificity of the 2Ct I-ELISA were 92.9% and 94.0%, respectively. The apparent prevalence of anti-2C antibodies for random bovine samples tested by the developed assay was 23.7%. The developed ELISA will help in augmenting the sensitivity of detection if used in combination with r3AB3 I-ELISA for sero-surveillance.Not Availabl

    Not Available

    No full text
    Not AvailableFoot-and-mouth disease (FMD) is a transboundary animal disease caused by foot-and-mouth disease virus. In India, systematic preventive vaccination using inactivated trivalent (O, A and Asia 1) vaccine is the strategy being adopted to control FMD. The use of non-structural protein (NSP)-contaminated inactivated vaccine raises concerns over differentiation of infected and vaccinated animals (DIVA) by NSP based immunoassays. However, 2C being a membrane associated protein usually remain absent in vaccine formulations and thus, anti-2C response is one of the most reliable indicator of the FMDV infection. In this study, 34 amino acids from N-terminus of 2C protein were removed to eliminate membrane-binding amphipathic helicase activity for the expression of recombinant protein in soluble form. Truncated 2C (2Ct) was utilized for development of an indirect ELISA (I-ELISA) for bovine and the developed 2Ct I-ELISA was validated using a panel constituting of serum of naïve, vaccinated and infected animals. The assay was compared with the in-house r3AB3 I-ELISA and the overall concordance was 85.31%. The diagnostic sensitivity and specificity of the 2Ct I-ELISA were 92.9% and 94.0%, respectively. The apparent prevalence of anti-2C antibodies for random bovine samples tested by the developed assay was 23.7%. The developed ELISA will help in augmenting the sensitivity of detection if used in combination with r3AB3 I-ELISA for sero-surveillance.Not Availabl

    Not Available

    No full text
    Not AvailableThe cDNA libraries are indispensable and critical tools for performing protein-protein interaction studies. In this study, a high quality yeast two-hybrid cDNA library from the LFBK cell line was constructed and characterized. LFBK cell line was originally derived from the swine kidney cells and is highly susceptible to foot-and-mouth disease virus (FMDV) infection. The total RNA was extracted from the LFBK cells and the switching mechanism at the 5' end of RNA template (SMART) technique was employed for the cDNA synthesis. Subsequently, double stranded cDNA was amplified by long-distance PCR, purified and co-transformed with pGADT7-rec vector in yeast strain Y187. The quality parameters of the constructed library were evaluated to qualify the constructed library. Nucleotide sequencing of the randomly selected clones from the library confirmed the swine genotype of LFBK cell line. The LFBK cDNA library was mated with the 2C protein of FMDV in yeast two-hybrid (YTH) system and several putative interaction partners were identified in the preliminary screening. The LFBK library was observed to be of high quality and could potentially be applied to protein interaction studies between FMDV and the host cells using YTH system.Not Availabl

    Megaprimer-mediated capsid swapping for the construction of custom-engineered chimeric foot-and-mouth disease virus

    No full text
    Foot-and-mouth disease (FMD) is a highly contagious, economically important disease of transboundary importance. Regular vaccination with chemically inactivated FMD vaccine is the major means of controlling the disease in endemic countries like India. However, the selection of appropriate candidate vaccine strain and its adaptation in cell culture to yield high titer of virus is a cumbersome process. An attractive approach to circumvent this tedious process is to replace the capsid coding sequence of an infectious full-genome length cDNA clone of a good vaccine strain with those of appropriate field strain, to produce custom-made chimeric FMD virus (FMDV). Nevertheless, the construction of chimeric virus can be difficult if the necessary endonuclease restriction sites are unavailable or unsuitable for swapping of the capsid sequence. Here we described an efficient method based on megaprimer-mediated capsid swapping for the construction of chimeric FMDV cDNA clones. Using FMDV vaccine strain A IND 40/2000 infectious clone (pA(40/2000)) as a donor plasmid, we exchanged the capsid sequence of pA(40/2000) with that of the viruses belonging to serotypes O (n = 5), A (n = 2), and Asia 1 (n = 2), and subsequently generated infectious FMDV from their respective chimeric cDNA clones. The chimeric viruses exhibited comparable infection kinetics, plaque phenotypes, antigenic profiles, and virion stability to the parental viruses. The results from this study suggest that megaprimer-based reverse genetics technology is useful for engineering chimeric vaccine strains for use in the control and prevention of FMD in endemic countries

    Foot-and-Mouth Disease Virus: Immunobiology, Advances in Vaccines and Vaccination Strategies Addressing Vaccine Failures—An Indian Perspective

    No full text
    A mass vaccination campaign in India seeks to control and eventually eradicate foot-and-mouth disease (FMD). Biosanitary measures along with FMD monitoring are being conducted along with vaccination. The implementation of the FMD control program has drastically reduced the incidence of FMD. However, cases are still reported, even in regions where vaccination is carried out regularly. Control of FMD outbreaks is difficult when the virus remains in circulation in the vaccinated population. Various FMD risk factors have been identified that are responsible for FMD in vaccinated areas. The factors are discussed along with strategies to address these challenges. The current chemically inactivated trivalent vaccine formulation containing strains of serotype O, A, and Asia 1 has limitations including thermolability and induction of only short-term immunity. Advantages and disadvantages of several new-generation alternate vaccine formulations are discussed. It is unfeasible to study every incidence of FMD in vaccinated animals/areas in such a big country as India with its huge livestock population. However, at the same time, it is absolutely necessary to identify the precise reason for vaccination failure. Failure to vaccinate is one reason for the occurrence of FMD in vaccinated areas. FMD epidemiology, emerging and re-emerging virus strains, and serological status over the past 10 years are discussed to understand the impact of vaccination and incidences of vaccination failure in India. Other factors that are important in vaccination failure that we discuss include disrupted herd immunity, health status of animals, FMD carrier status, and FMD prevalence in other species. Recommendations to boost the search of alternate vaccine formulation, strengthen the veterinary infrastructure, bolster the real-time monitoring of FMD, as well as a detailed investigation and documentation of every case of vaccination failure are provided with the goal of refining the control program

    Not Available

    No full text
    Not AvailableA mass vaccination campaign in India seeks to control and eventually eradicate foot-and-mouth disease (FMD). Biosanitary measures along with FMD monitoring are being conducted along with vaccination. The implementation of the FMD control program has drastically reduced the incidence of FMD. However, cases are still reported, even in regions where vaccination is carried out regularly. Control of FMD outbreaks is difficult when the virus remains in circulation in the vaccinated population. Various FMD risk factors have been identified that are responsible for FMD in vaccinated areas. The factors are discussed along with strategies to address these challenges. The current chemically inactivated trivalent vaccine formulation containing strains of serotype O, A, and Asia 1 has limitations including thermolability and induction of only short-term immunity. Advantages and disadvantages of several new-generation alternate vaccine formulations are discussed. It is unfeasible to study every incidence of FMD in vaccinated animals/areas in such a big country as India with its huge livestock population. However, at the same time, it is absolutely necessary to identify the precise reason for vaccination failure. Failure to vaccinate is one reason for the occurrence of FMD in vaccinated areas. FMD epidemiology, emerging and re-emerging virus strains, and serological status over the past 10 years are discussed to understand the impact of vaccination and incidences of vaccination failure in India. Other factors that are important in vaccination failure that we discuss include disrupted herd immunity, health status of animals, FMD carrier status, and FMD prevalence in other species. Recommendations to boost the search of alternate vaccine formulation, strengthen the veterinary infrastructure, bolster the real-time monitoring of FMD, as well as a detailed investigation and documentation of every case of vaccination failure are provided with the goal of refining the control program.Not Availabl
    corecore