11 research outputs found
A 'snip' in time: what is the best age to circumcise?
<p>Abstract</p> <p>Background</p> <p>Circumcision is a common procedure, but regional and societal attitudes differ on whether there is a need for a male to be circumcised and, if so, at what age. This is an important issue for many parents, but also pediatricians, other doctors, policy makers, public health authorities, medical bodies, and males themselves.</p> <p>Discussion</p> <p>We show here that infancy is an optimal time for clinical circumcision because an infant's low mobility facilitates the use of local anesthesia, sutures are not required, healing is quick, cosmetic outcome is usually excellent, costs are minimal, and complications are uncommon. The benefits of infant circumcision include prevention of urinary tract infections (a cause of renal scarring), reduction in risk of inflammatory foreskin conditions such as balanoposthitis, foreskin injuries, phimosis and paraphimosis. When the boy later becomes sexually active he has substantial protection against risk of HIV and other viral sexually transmitted infections such as genital herpes and oncogenic human papillomavirus, as well as penile cancer. The risk of cervical cancer in his female partner(s) is also reduced. Circumcision in adolescence or adulthood may evoke a fear of pain, penile damage or reduced sexual pleasure, even though unfounded. Time off work or school will be needed, cost is much greater, as are risks of complications, healing is slower, and stitches or tissue glue must be used.</p> <p>Summary</p> <p>Infant circumcision is safe, simple, convenient and cost-effective. The available evidence strongly supports infancy as the optimal time for circumcision.</p
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Characteristics of Adults in the Hepatitis B Research Network in North America Reflect Their Country of Origin and Hepatitis B Virus Genotype
Chronic hepatitis B virus (HBV) infection is an important cause of cirrhosis and hepatocellular carcinoma worldwide; populations that migrate to the US and Canada might be disproportionately affected. The Hepatitis B Research Network (HBRN) is a cooperative network of investigators from the United States and Canada, created to facilitate clinical, therapeutic, and translational research in adults and children with hepatitis B. We describe the structure of the network and baseline characteristics of adults with hepatitis B enrolled in the network
Developmentally sensitive multispectral cortical connectivity profiles serving visual selective attention
Throughout childhood and adolescence, the brain undergoes significant structural and functional changes that contribute to the maturation of multiple cognitive domains, including selective attention. Selective attention is crucial for healthy executive functioning and while key brain regions serving selective attention have been identified, their age-related changes in neural oscillatory dynamics and connectivity remain largely unknown. We examined the developmental sensitivity of selective attention circuitry in 91 typically developing youth aged 6 – 13 years old. Participants completed a number-based Simon task while undergoing magnetoencephalography (MEG) and the resulting data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and task-related peak voxels in the occipital, parietal, and cerebellar cortices were used as seeds for subsequent whole-brain connectivity analyses in the alpha and gamma range. Our key findings revealed developmentally sensitive connectivity profiles in multiple regions crucial for selective attention, including the temporoparietal junction (alpha) and prefrontal cortex (gamma). Overall, these findings suggest that brain regions serving selective attention are highly sensitive to developmental changes during the pubertal transition period
Assessment of the impact of shared brain imaging data on the scientific literature
Data sharing is increasingly recommended as a means of accelerating science by facilitating collaboration, transparency, and reproducibility. While few oppose data sharing philosophically, a range of barriers deter most researchers from implementing it in practice. To justify the significant effort required for sharing data, funding agencies, institutions, and investigators need clear evidence of benefit. Here, using the International Neuroimaging Data-sharing Initiative, we present a case study that provides direct evidence of the impact of open sharing on brain imaging data use and resulting peer-reviewed publications. We demonstrate that openly shared data can increase the scale of scientific studies conducted by data contributors, and can recruit scientists from a broader range of disciplines. These findings dispel the myth that scientific findings using shared data cannot be published in high-impact journals, suggest the transformative power of data sharing for accelerating science, and underscore the need for implementing data sharing universally
Recommended from our members
Characteristics of Adults in the Hepatitis B Research Network in North America Reflect Their Country of Origin and Hepatitis B Virus Genotype
Background & aimsChronic hepatitis B virus (HBV) infection is an important cause of cirrhosis and hepatocellular carcinoma worldwide; populations that migrate to the United States and Canada might be affected disproportionately. The Hepatitis B Research Network (HBRN) is a cooperative network of investigators from the United States and Canada, created to facilitate clinical, therapeutic, and translational research in adults and children with hepatitis B. We describe the structure of the network and baseline characteristics of adults with hepatitis B enrolled in the network.MethodsThe HBRN collected data on the clinical characteristics of 1625 adults with chronic HBV infection who are not receiving antiviral therapy from 21 clinical centers in North America.ResultsHalf of the subjects in the HBRN are men, and the median age is 42 years; 72% are Asian, 15% are black, and 11% are white; with 82% born outside of North America. The most common HBV genotype was B (39%); 74% of subjects were negative for the hepatitis B e antigen. The median serum level of HBV DNA when the study began was 3.6 log10 IU/mL; 68% of male subjects and 67% of female subjects had alanine aminotransferase levels higher than the normal range.ConclusionsThe HBRN cohort is used to address important clinical and therapeutic questions for North Americans infected with chronic HBV and to guide health policies on HBV prevention and management in North America