6 research outputs found

    Mosquito ageing modulates the development, virulence and transmission potential of pathogens

    Get PDF
    Host age variation is a striking source of heterogeneity that can shape the evolution and transmission dynamic of pathogens. Compared with vertebrate systems, our understanding of the impact of host age on invertebrate–pathogen interactions remains limited. We examined the influence of mosquito age on key life-history traits driving human malaria transmission. Females of Anopheles coluzzii, a major malaria vector, belonging to three age classes (4-, 8- and 12-day-old), were experimentally infected with Plasmodium falciparum field isolates. Our findings revealed reduced competence in 12-day-old mosquitoes, characterized by lower oocyst/sporozoite rates and intensities compared with younger mosquitoes. Despite shorter median longevities in older age classes, infected 12-day-old mosquitoes exhibited improved survival, suggesting that the infection might act as a fountain of youth for older mosquitoes specifically. The timing of sporozoite appearance in the salivary glands remained consistent across mosquito age classes, with an extrinsic incubation period of approximately 13 days. Integrating these results into an epidemiological model revealed a lower vectorial capacity for older mosquitoes compared with younger ones, albeit still substantial owing to extended longevity in the presence of infection. Considering age heterogeneity provides valuable insights for ecological and epidemiological studies, informing targeted control strategies to mitigate pathogen transmission

    Detection of Plasmodium falciparum in laboratory-reared and naturally infected wild mosquitoes using near-infrared spectroscopy.

    Get PDF
    There is an urgent need for high throughput, affordable methods of detecting pathogens inside insect vectors to facilitate surveillance. Near-infrared spectroscopy (NIRS) has shown promise to detect arbovirus and malaria in the laboratory but has not been evaluated in field conditions. Here we investigate the ability of NIRS to identify Plasmodium falciparum in Anopheles coluzzii mosquitoes. NIRS models trained on laboratory-reared mosquitoes infected with wild malaria parasites can detect the parasite in comparable mosquitoes with moderate accuracy though fails to detect oocysts or sporozoites in naturally infected field caught mosquitoes. Models trained on field mosquitoes were unable to predict the infection status of other field mosquitoes. Restricting analyses to mosquitoes of uninfectious and highly-infectious status did improve predictions suggesting sensitivity and specificity may be better in mosquitoes with higher numbers of parasites. Detection of infection appears restricted to homogenous groups of mosquitoes diminishing NIRS utility for detecting malaria within mosquitoes

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Cardiovascular properties of aqueous extract from Tapinanthus dodoneifolius DC Danser

    No full text
    Aqueous extracts of Tapinanthus dodoneifolius DC Danser. (Loranthaceae) (AETD) were investigated for cardiovascular activities on isolated rat aorta and heart. AETD did not affect heart rate but significantly enhanced heart contraction force and relaxation capacity. AETD (0.001-1mg/ml) elicited a dose-dependent relaxation on arteries which was previously contracted with phenylephrine [10-6M] (rat aorta). AETD induces relaxation in endothelium dependent manner. When Indomethacin failed to inhibit AETD vasodilatory activity, in the presence of L-NAME, the vasodilatory activity of AETD was completely abolished. These results suggest a cardiotropic activity without any tachycardia as a side effect for AETD. However, AETD elicited vasodilatory activity which involved NO from endothelium. Key words : Tapinanthus dodoneifolius, endothelium , vasodilator , rat. Afr. J. Trad. Comp. Alt. Med. , 2005, 2 (1): 25-3

    Anopheles aquatic development kinetic and adults’ longevity through different seasons in laboratory and semi-field conditions in Burkina Faso

    No full text
    Abstract Background Anopheles mosquitoes are ectothermic and involved in numerous pathogen transmissions. Their life history traits are influenced by several environmental factors such as temperature, relative humidity and photoperiodicity. Despite extensive investigations of these environmental conditions on vector population ecology, their impact on the different life stages of Anopheles at different seasons in the year remains poorly explored. This study reports the potential impact of these abiotic factors on the immature and adult stages of Anopheles gambiae sensu lato during different seasons. Methods Environmental conditions were simulated in the laboratory using incubators to mimic the environmental conditions of two important periods of the year in Burkina Faso: the peak of rainy season (August) and the onset of dry season (December). Eggs from wild An. coluzzii and An. gambiae s.l. were reared separately under each environmental condition. For Anopheles coluzzii or An. gambiae s.l., eggs were equally divided into two groups assigned to the two experimental conditions. Four replicates were carried out for this experiment. Then, egg hatching rate, pupation rate, larval development time, larva-to-pupae development time, adult emergence dynamics and longevity of Anopheles were evaluated. Also, pupae-to-adult development time from wild L3 and L4 Anopheles larvae was estimated under semi-field conditions in December. Results A better egg hatching rate was recorded overall with conditions mimicking the onset of the dry season compared to the peak of the rainy season. Larval development time and longevity of An. gambiae s.l. female were significantly longer at the onset of the dry season compared than at the peak of the rainy season. Adult emergence was spread over 48 and 96 h at the peak of the rainy season and onset of dry season conditions respectively. This 96h duration in the controlled conditions of December was also observed in the semi-field conditions in December. Conclusions The impact of temperature and relative humidity on immature stages and longevity of An. gambiae s.l. adult females differed under both conditions. These findings contribute to a better understanding of vector population dynamics throughout different seasons of the year and may facilitate tailoring of control strategies. Graphical Abstrac

    Risques climatiques et agriculture en Afrique de l’Ouest

    No full text
    Le futur de l’Afrique de l’Ouest dépend de la capacité du secteur de l’agriculture à s’adapter pour garantir la sécurité alimentaire dans un contexte de changement climatique et de croissance démographique. Pour faciliter cette adaptation, la recherche a déployé d’importants efforts pour améliorer les connaissances sur les mécanismes climatiques et leurs impacts sur les systèmes agropastoraux. Or, ces avancées issues de la recherche ne sont que rarement prises en compte dans la planification et la prise de décision. Partant de ce constat, un projet de recherche « Agriculture et gestion des risques climatiques : outils et recherches en Afrique », soutenu par le ministère français des Affaires étrangères et du Développement international est mené entre 2016 et 2018 dans plusieurs pays d’Afrique de l’Ouest. Il a pour objectif d’élaborer des outils efficaces de gestion du risque climatique pour les agriculteurs, en co-construisant avec des réseaux de chercheurs et d’acteurs directement impliqués dans l’accompagnement de l’agriculture des stratégies innovantes basées sur les résultats de la recherche. Cet ouvrage restitue les principales avancées de cette recherche-action sur trois thématiques prioritaires : les services climatiques pour l’agriculture, la gestion des ressources en eau et l’intensification écologique. Il permet aux acteurs du secteur agricole (organisations paysannes, filières, secteur privé agricole, banques de développement agricole, fournisseurs d’intrants, services agricoles et de météorologie) de s’approprier de nouvelles connaissances et de nouveaux outils pour une meilleure prise en compte des risques climatiques dans la gestion des systèmes de production
    corecore