14 research outputs found
Linking climate change to lemming cycles
The population cycles of rodents at northern latitudes have puzzled people for centuries(1,2), and their impact is manifest throughout the alpine ecosystem(2,3). Climate change is known to be able to drive animal population dynamics between stable and cyclic phases(4,5), and has been suggested to cause the recent changes in cyclic dynamics of rodents and their predators(3,6-9). But although predator - rodent interactions are commonly argued to be the cause of the Fennoscandian rodent cycles(1,10-13), the role of the environment in the modulation of such dynamics is often poorly understood in natural systems(8,9,14). Hence, quantitative links between climate-driven processes and rodent dynamics have so far been lacking. Here we show that winter weather and snow conditions, together with density dependence in the net population growth rate, account for the observed population dynamics of the rodent community dominated by lemmings ( Lemmus lemmus) in an alpine Norwegian core habitat between 1970 and 1997, and predict the observed absence of rodent peak years after 1994. These local rodent dynamics are coherent with alpine bird dynamics both locally and over all of southern Norway, consistent with the influence of large- scale fluctuations in winter conditions. The relationship between commonly available meteorological data and snow conditions indicates that changes in temperature and humidity, and thus conditions in the subnivean space, seem to markedly affect the dynamics of alpine rodents and their linked groups. The pattern of less regular rodent peaks, and corresponding changes in the overall dynamics of the alpine ecosystem, thus seems likely to prevail over a growing area under projected climate change
The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya
Arctic terrestrial ecosystems are generally considered to be species poor, fragile and often isolated. Nonetheless, their intricate complexity, especially that of the invertebrate component, is beginning to emerge. Attention has become focused on the Arctic both due to the importance of this rapidly changing region for the Earth and also the inherent interest of an extreme and unique environment. The three archipelagoes considered here, Svalbard, Franz Josef Land and Novaya Zemlya, delineate the Barents Sea to the west, north and east. This is a region of convergence for Palearctic and Nearctic faunas re-colonising the Arctic following the retreat of the ice after the Last Glacial Maximum (LGM). Despite the harsh Arctic environment and the short period since deglaciation, the archipelagoes of the Barents Sea are inhabited by diverse invertebrate communities. But there is an obvious imbalance in our knowledge of many taxa of each archipelago, and in our knowledge of many taxa. Research effort in Svalbard is increasing rapidly while there are still few reports, particularly in the western literature, from Franz Josef Land and Novaya Zemlya. Nevertheless, there appears to be a surprising degree of dissimilarity between the invertebrate faunas, possibly reflecting colonization history. We provide a baseline synthesis of the terrestrial and freshwater invertebrate fauna of the Barents Sea archipelagoes, highlight the taxa present, the characteristic elements of fauna and the complexity of their biogeography. In doing so, we provide a background from which to assess responses to environmental change for a region under increasing international attention from scientific, industrial and political communities as well as non-governmental organizations and the general public
The arthropod community of Scots pine (Pinus sylvestris L.) canopies in Norway
We summarise the findings of arthropods collected by fogging the canopy of 24 pine trees in two sites in Eastern and Western Norway. From the samples, taken in 1998 and in 1999, almost 30,000 specimens were determined to 512 species, with Diptera being most species rich (210 species), followed by Coleoptera (76 species) and Araneae (49 species). Of the 96 new species records, nine were new to science (5 Diptera and 4 Oribatida), two were new to the European, three to the Scandinavian and 82 to the Norwegian faunas. The paper demonstrates the need for detailed faunistical inventories of European forests
Recommended from our members
Forensic acarology: an introduction
Mites can be found in all imaginable terrestrial habitats, in freshwater, and in salt water. Mites can be found in our houses and furnishings, on our clothes, and even in the pores of our skin-almost every single person carries mites. Most of the time, we are unaware of them because they are small and easily overlooked, and-most of the time-they do not cause trouble. In fact, they may even proof useful, for instance in forensics. The first arthropod scavengers colonising a dead body will be flies with phoretic mites. The flies will complete their life cycle in and around the corpse, while the mites may feed on the immature stages of the flies. The mites will reproduce much faster than their carriers, offering themselves as valuable timeline markers. There are environments where insects are absent or rare or the environmental conditions impede their access to the corpse. Here, mites that are already present and mites that arrive walking, through air currents or material transfer become important. At the end of the ninetieth century, the work of Jean Pierre M,gnin became the starting point of forensic acarology. M,gnin documented his observations in 'La Faune des Cadavres' [The Fauna of Carcasses]. He was the first to list eight distinct waves of arthropods colonising human carcasses. The first wave included flies and mites, the sixth wave was composed of mites exclusively. The scope of forensic acarology goes further than mites as indicators of time of death. Mites are micro-habitat specific and might provide evidential data on movement or relocation of bodies, or locating a suspect at the scene of a crime. Because of their high diversity, wide occurrence, and abundance, mites may be of great value in the analysis of trace evidence
Permanent genetic resources added to Molecular Ecology Resources Database 1 April 2010-31 May 2010
This article documents the addition of 396 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anthocidaris crassispina, Aphis glycines, Argyrosomus regius, Astrocaryum sciophilum, Dasypus novemcinctus, Delomys sublineatus, Dermatemys mawii, Fundulus heteroclitus, Homalaspis plana, Jumellea rossii, Khaya senegalensis, Mugil cephalus, Neoceratitis cyanescens, Phalacrocorax aristotelis, Phytophthora infestans, Piper cordulatum, Pterocarpus indicus, Rana dalmatina, Rosa pulverulenta, Saxifraga oppositifolia, Scomber colias, Semecarpus kathalekanensis, Stichopus monotuberculatus, Striga hermonthica, Tarentola boettgeri and Thermophis baileyi. These loci were cross-tested on the following species: Aphis gossypii, Sooretamys angouya, Euryoryzomys russatus, Fundulus notatus, Fundulus olivaceus, Fundulus catenatus, Fundulus majalis, Jumellea fragrans, Jumellea triquetra Jumellea recta, Jumellea stenophylla, Liza richardsonii, Piper marginatum, Piper aequale, Piper darienensis, Piper dilatatum, Rana temporaria, Rana iberica, Rana pyrenaica, Semecarpus anacardium, Semecarpus auriculata, Semecarpus travancorica, Spondias acuminata, Holigarna grahamii, Holigarna beddomii, Mangifera indica, Anacardium occidentale, Tarentola delalandii, Tarentola caboverdianus and Thermophis zhaoermii