270 research outputs found

    Editorial: Factors Influencing Biomarker Range Intervals in Farm Animals

    Get PDF
    A wide variety of biomarkers are used in farm animals for different purposes such as diagnostic testing, animal health monitoring, and serological surveillance and management of a farm. However, the presence of non-pathologic factors represents a challenge for valid and reliable biomarker use. These factors will influence reference interval (RI) and interpretation of biomarker test results. They are defined by intra-species genetic variability, and different physiological and environmental conditions, and their impact might be biological and/or analytical. In this special issue, our contributors have addressed some of the problems related with these factors. Harmonization of veterinary biomarker calibration procedures and reagents is also a must for the rationale use of biomarkers, as pointed out in one of the articles. Yu et al. studied the effects of several variables on the serum biochemical RIs in young animals: age, season of birth and sex in calves and age and sex in piglets. The study comprised unweaned calves (at 24 h and 2, 5, and 7 weeks of age) and piglets from weaning at 21 days old to 35 days of life. In calves, season of birth did not affect the distribution of values of the studied analytes while age-biased differences were noticed. The authors showed that hepatic enzymes, renal markers, antioxidant enzymes (glutatione..

    NGPaaS framework for enriched and customized virtual network functions-as-a-service

    Get PDF
    This paper describes how the novel Next Generation Platform-as-a-Service (NGPaaS) framework can facilitate major benefits for Network Operators and Vertical Service Providers (VSPs) who wish to leverage Virtual Network Functions-as-a-Service (VNFaaS) capabilities. Network Operators can benefit by providing an "on demand" PaaS with required features for the VSPs, thus generating new revenue streams but with low operational overhead due to the high degree of automation. VSPs can benefit from the PaaS-oriented approach, by being able to flexibly on-board new VNF types and "value-added" service capabilities like monitoring, healing and profiling, to deliver customized service blueprints to meet the needs of their end customers. The paper outlines the design of an early prototype, built on the Open-CORD platform and using industry-standard Virtualised Network Functions (VNFs)

    Exploring the applicability of solar driven photocatalytic processes to control inestation by zebra mussel

    Full text link
    Dreissena polymorpha (zebra mussel) is an invasive freshwater bivalve mollusc that causes important technical and environmental problems. Titanium dioxide solar photocatalysis was checked for disinfestation of veligers of zebra mussel. Approximately 70% damaged larvae were observed after 2h of solar irradiation with 0.2 and 0.5g/l of TiO 2. Neutral photo-Fenton could be a promising alternative as ca. 80% damaged larvae were detected in only 3h irradiation in the presence of H 2O 2 (10mg/l). This process was clearly more effective than sunlight irradiation, H 2O 2, or dark Fenton. The performance of the process was slightly improved when a pH value of 5.5 was employed, although further research is needed to explore the compatibility of this medium with irrigation. Finally, the process was scaled up to 4l using a solar photo-reactor; again in this case, 90% of the veligers were damaged after 3h of irradiation. © 2011 Elsevier B.V.We want to acknowledge the financial support of Spanish Ministerio de Medio Ambiente, Medio Rural y Marino (Project 100/RN08/03.4) and Confederacion Hidrografica del Ebro for providing water samples infested with zebra mussel.Bernabeu García, A.; Vicente Candela, R.; Peribañez Lopez, MA.; Arques Sanz, A.; Amat Payá, AM. (2011). Exploring the applicability of solar driven photocatalytic processes to control inestation by zebra mussel. Chemical Engineering Journal. 171(2):490-494. https://doi.org/10.1016/j.cej.2011.04.009S490494171

    Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program

    Get PDF
    Altres ajuts: This work was supported by the Obra Social "La Caixa" (to M. Esteller).Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease

    Prominence seismology using small amplitude oscillations

    Full text link
    Quiescent prominences are thin slabs of cold, dense plasma embedded in the much hotter and rarer solar corona. Although their global shape is rather irregular, they are often characterised by an internal structure consisting of a large number of thin, parallel threads piled together. Prominences often display periodic disturbances mostly observed in the Doppler displacement of spectral lines and with an amplitude typically of the order of or smaller than 2--3 km s1^{-1}, a value which seems to be much smaller than the characteristic speeds of the prominence plasma (namely the Alfv\'en and sound velocities). Two particular features of these small amplitude prominence oscillations is that they seem to damp in a few periods and that they seem not to affect the whole prominence structure. In addition, in high spatial resolution observations, in which threads can be discerned, small amplitude oscillations appear to be clearly associated to these fine structure constituents. Prominence seismology tries to bring together the results from these observations (e.g. periods, wavelengths, damping times) and their theoretical modeling (by means of the magnetohydrodynamic theory) to gain insight into physical properties of prominences that cannot be derived from direct observation. In this paper we discuss works that have not been described in previous reviews, namely the first seismological application to solar prominences and theoretical advances on the attenuation of prominence oscillations

    Gaining further insight into photo-Fenton treatment of phenolic compounds commonly found in food processing industry

    Full text link
    A mixture of eight phenolic compounds, namely 2,4-dinitrophenol, tannic, ellagic, gallic, protocatechuic, vanillic, syringic and sinapic acids, have been treated by means of a photo-Fenton process under simulated and real sunlight. An experimental design methodology, based in Doehlert matrixes, was employed to check the effect of the concentration of Fe(II) and H2O2, as well as pH. Response surfaces show that photo-Fenton can be extended to pH values clearly above 2.8, probably due to complexation of iron with the phenolic substances. Experiments performed under solar irradiation at pH = 3.9 showed that complete removal of the monitored pollutants was achieved in less than 3 min; mineralisation was also efficient, although some organics remained in the solution. Toxicity was monitored according to Pseudokirchneriella subcapitata and Daphnia magna bioassays; Recombinant Yeast Assay (RYA) was employed to assess estrogenic and dioxin-like activities. 2,4-Dinitrophenol was demonstrated to be the major concern and, in general, photo-Fenton resulted in a detoxification of the solution. Finally, excitation emission matrix (EEM) fluorimetry was employed to obtain complementary information on the behaviour of organic matter. Most peaks associated with the parent pollutants disappeared after short irradiation periods and, at 12 min of irradiation chromophores were destroyed, what can be associated with the removal of complex molecules. (C) 2015 Elsevier B.V. All rights reserved.The authors want to thank the financial support of the Spanish Ministerio de Education y Ciencia (CTQ2012-38754-C03-02) and Generalitat Valenciana (GV/2015/074). Sara Garcia-Ballesteros would like to thank Spanish Ministerio de Economia y Competitividad for her fellowship (BES-2013-066201).García Ballesteros, S.; Mora Carbonell, M.; Vicente Candela, R.; Sabater Marco, C.; Castillo López, MÁ.; Arques Sanz, A.; Amat Payá, AM. (2016). Gaining further insight into photo-Fenton treatment of phenolic compounds commonly found in food processing industry. Chemical Engineering Journal. 288:126-136. https://doi.org/10.1016/j.cej.2015.11.031S12613628

    A Measurement of Coherent Neutral Pion Production in Neutrino Neutral Current Interactions in NOMAD

    Get PDF
    We present a study of exclusive neutral pion production in neutrino-nucleus Neutral Current interactions using data from the NOMAD experiment at the CERN SPS. The data correspond to 1.44×1061.44 \times 10^6 muon-neutrino Charged Current interactions in the energy range 2.5Eν3002.5 \leq E_{\nu} \leq 300 GeV. Neutrino events with only one visible π0\pi^0 in the final state are expected to result from two Neutral Current processes: coherent π0\pi^0 production, {\boldmath ν+Aν+A+π0\nu + {\cal A} \to \nu + {\cal A} + \pi^0} and single π0\pi^0 production in neutrino-nucleon scattering. The signature of coherent π0\pi^0 production is an emergent π0\pi^0 almost collinear with the incident neutrino while π0\pi^0's produced in neutrino-nucleon deep inelastic scattering have larger transverse momenta. In this analysis all relevant backgrounds to the coherent π0\pi^0 production signal are measured using data themselves. Having determined the backgrounds, and using the Rein-Sehgal model for the coherent π0\pi^0 production to compute the detection efficiency, we obtain {\boldmath 4630±522(stat)±426(syst)4630 \pm 522 (stat) \pm 426 (syst)} corrected coherent-π0\pi^0 events with Eπ00.5E_{\pi^0} \geq 0.5 GeV. We measure {\boldmath σ(νAνAπ0)=[72.6±8.1(stat)±6.9(syst)]×1040cm2/nucleus\sigma (\nu {\cal A} \to \nu {\cal A} \pi^0) = [ 72.6 \pm 8.1(stat) \pm 6.9(syst) ] \times 10^{-40} cm^2/nucleus}. This is the most precise measurement of the coherent π0\pi^0 production to date.Comment: 23 pages, 9 figures, accepted for publication in Phys. Lett.

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
    corecore