4,418 research outputs found

    Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach

    Full text link
    We derive the dynamics of magnetohydrodynamic waves in two-fluid partially ionized plasmas and to compare the results with those obtained under single-fluid description. Two-fluid magnetohydrodynamic equations are used, where ion-electron plasma and neutral particles are considered as separate fluids. Dispersion relations of linear magnetohydrodynamic waves are derived for simplest case of homogeneous medium. Frequencies and damping rates of waves are obtained for different parameters of background plasma. We found that two- and single-fluid descriptions give similar results for low frequency waves. However, the dynamics of MHD waves in two-fluid approach is significantly changed when the wave frequency becomes comparable or higher than ion-neutral collision frequency. Alfven and fast magneto-acoustic waves attain their maximum damping rate at particular frequencies (for example, the peak frequency equals 2.5 ion-neutral collision frequency for 50 % of neutral Hydrogen) in wave spectrum. The damping rates are reduced for higher frequency waves. The new mode of slow magneto-acoustic wave appears for higher frequency branch, which is connected to neutral hydrogen fluid. The single-fluid approach perfectly deals with slow processes in partially ionized plasmas, but fails for time-scales smaller than ion-neutral collision time. Therefore, two-fluid approximation should be used for the description of relatively fast processes. Some results of single-fluid description, for example the damping of high-frequency Alfven waves in the solar chromosphere due to ion-neutral collisions, should be revised in future.Comment: 8 pages, 7 figures, accepted in A&

    Large-scale electronic structure theory for simulating nanostructure process

    Full text link
    Fundamental theories and practical methods for large-scale electronic structure calculations are given, in which the computational cost is proportional to the system size. Accuracy controlling methods for microscopic freedoms are focused on two practical solver methods, Krylov-subspace method and generalized-Wannier-state method. A general theory called the 'multi-solver' scheme is also formulated, as a hybrid between different solver methods. Practical examples are carried out in several insulating and metallic systems with 10^3-10^5 atoms. All the theories provide general guiding principles of constructing an optimal calculation for simulating nanostructure processes, since a nanostructured system consists of several competitive regions, such as bulk and surface regions, and the simulation is designed to reproduce the competition with an optimal computational cost.Comment: 19 pages, 6 figures. To appear in J. Phys. Cond. Matt. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    Swaying threads of a solar filament

    Full text link
    From recent high resolution observations obtained with the Swedish 1 m Solar Telescope in La Palma, we detect swaying motions of individual filament threads in the plane of the sky. The oscillatory character of these motions are comparable with oscillatory Doppler signals obtained from corresponding filament threads. Simultaneous recordings of motions in the line of sight and in the plane of the sky give information about the orientation of the oscillatory plane. These oscillations are interpreted in the context of the magnetohydrodynamic theory. Kink magnetohydrodynamic waves supported by the thread body are proposed as an explanation of the observed thread oscillations. On the basis of this interpretation and by means of seismological arguments, we give an estimation of the thread Alfv\'en speed and magnetic field strength by means of seismological arguments.Comment: Accepted for publication in the Astrophysical Journa

    Damping of Alfven waves in solar partially ionized plasmas: effect of neutral helium in multi-fluid approach

    Full text link
    Chromospheric and prominence plasmas contain neutral atoms, which may change the plasma dynamics through collision with ions. Most of the atoms are neutral hydrogen, but a significant amount of neutral helium may also be present in the plasma with a particular temperature. Damping of MHD waves due to ion collision with neutral hydrogen is well studied, but the effects of neutral helium are largely unknown. We aim to study the effect of neutral helium in the damping of Alfven waves in solar partially ionized plasmas. We consider three-fluid magnetohydrodynamic (MHD) approximation, where one component is electron-proton-singly ionized helium and other two components are the neutral hydrogen and neutral helium atoms. We derive the dispersion relation of linear Alfven waves in isothermal and homogeneous plasma. Then we solve the dispersion relation and derive the damping rates of Alfven waves for different plasma parameters. The presence of neutral helium significantly enhances the damping of Alfven waves compared to the damping due to neutral hydrogen at certain values of plasma temperature (10000-40000 K) and ionization. Damping rates have a peak near the ion-neutral collision frequency, but decrease for the higher part of wave spectrum. Collision of ions with neutral helium atoms can be of importance for the damping of Alfven waves in chromospheric spicules and in prominence-corona transition regions.Comment: 7 pages, 4 figures, accepted in A&

    Oscillatory Modes of a Prominence-PCTR-Corona Slab Model

    Full text link
    Oscillations of magnetic structures in the solar corona have often been interpreted in terms of magnetohydrodynamic waves. We study the adiabatic magnetoacoustic modes of a prominence plasma slab with a uniform longitudinal magnetic field, surrounded by a prominence-corona transition region (PCTR) and a coronal medium. Considering linear small-amplitude oscillations, the dispersion relation for the magnetoacoustic slow and fast modes is deduced assuming evanescent-like perturbations in the coronal medium. In the system without PCTR, a classification of the oscillatory modes according to the polarisation of their eigenfunctions is made in order to distinguish modes with fast-like or slow-like properties. Internal and external slow modes are governed by the prominence and coronal properties respectively, and fast modes are mostly dominated by prominence conditions for the observed wavelengths. In addition, the inclusion of an isothermal PCTR does not substantially influence the mode frequencies, but new solutions (PCTR slow modes) are present.Comment: Accepted for publication in Solar Physic

    Linearly scaling direct method for accurately inverting sparse banded matrices

    Get PDF
    In many problems in Computational Physics and Chemistry, one finds a special kind of sparse matrices, termed "banded matrices". These matrices, which are defined as having non-zero entries only within a given distance from the main diagonal, need often to be inverted in order to solve the associated linear system of equations. In this work, we introduce a new O(n) algorithm for solving such a system, being n X n the size of the matrix. We produce the analytical recursive expressions that allow to directly obtain the solution, as well as the pseudocode for its computer implementation. Moreover, we review the different options for possibly parallelizing the method, we describe the extension to deal with matrices that are banded plus a small number of non-zero entries outside the band, and we use the same ideas to produce a method for obtaining the full inverse matrix. Finally, we show that the New Algorithm is competitive, both in accuracy and in numerical efficiency, when compared to a standard method based in Gaussian elimination. We do this using sets of large random banded matrices, as well as the ones that appear when one tries to solve the 1D Poisson equation by finite differences.Comment: 24 pages, 5 figures, submitted to J. Comp. Phy

    First-principles modeling of the polycyclic aromatic hydrocarbons reduction

    Full text link
    Density functional theory modelling of the reduction of realistic nanographene molecules (C42H18, C48H18 and C60H24) by molecular hydrogen evidences for the presence of limits in the hydrogenation process. These limits caused the contentions between three-fold symmetry of polycyclic aromatic hydrocarbon molecules and two-fold symmetry of adsorbed hydrogen pairs. Increase of the binding energy between nanographenes during reduction is also discussed as possible cause of the experimentally observed limited hydrogenation of studied nanographenes.Comment: 18 pages, 7 figures, accepted to J. Phys. Chem.

    Grain Boundaries in Graphene on SiC(0001ˉ\bar{1}) Substrate

    Full text link
    Grain boundaries in epitaxial graphene on the SiC(0001ˉ\bar{1}) substrate are studied using scanning tunneling microscopy and spectroscopy. All investigated small-angle grain boundaries show pronounced out-of-plane buckling induced by the strain fields of constituent dislocations. The ensemble of observations allows to determine the critical misorientation angle of buckling transition θc=19± 2∘\theta_c = 19 \pm~2^\circ. Periodic structures are found among the flat large-angle grain boundaries. In particular, the observed θ=33±2∘\theta = 33\pm2^\circ highly ordered grain boundary is assigned to the previously proposed lowest formation energy structural motif composed of a continuous chain of edge-sharing alternating pentagons and heptagons. This periodic grain boundary defect is predicted to exhibit strong valley filtering of charge carriers thus promising the practical realization of all-electric valleytronic devices

    Dynamical cloud formation traced by atomic and molecular gas

    Get PDF
    Context. Atomic and molecular cloud formation is a dynamical process. However, kinematic signatures of these processes are still observationally poorly constrained. Aims. We identify and characterize the cloud formation signatures in atomic and molecular gas. Methods. Targeting the cloud-scale environment of the prototypical infrared dark cloud G28.3, we employed spectral line imaging observations of the two atomic lines HI and [CI] as well as molecular lines observations in 13CO in the 1–0 and 3–2 transitions. The analysis comprises investigations of the kinematic properties of the different tracers, estimates of the mass flow rates, velocity structure functions, a histogram of oriented gradients (HOG) study, and comparisons to simulations. Results. The central infrared dark cloud (IRDC) is embedded in a more diffuse envelope of cold neutral medium traced by HI self-absorption and molecular gas. The spectral line data as well as the HOG and structure function analysis indicate a possible kinematic decoupling of the HI from the other gas compounds. Spectral analysis and position–velocity diagrams reveal two velocity components that converge at the position of the IRDC. Estimated mass flow rates appear rather constant from the cloud edge toward the center. The velocity structure function analysis is consistent with gas flows being dominated by the formation of hierarchical structures. Conclusions. The observations and analysis are consistent with a picture where the IRDC G28.3 is formed at the center of two converging gas flows. While the approximately constant mass flow rates are consistent with a self-similar, gravitationally driven collapse of the cloud, external compression (e.g., via spiral arm shocks or supernova explosions) cannot be excluded yet. Future investigations should aim at differentiating the origin of such converging gas flows

    Surface-reconstructed Icosahedral Structures for Lead Clusters

    Full text link
    We describe a new family of icosahedral structures for lead clusters. In general, structures in this family contain a Mackay icosahedral core with a reconstructed two-shell outer-layer. This family includes the anti-Mackay icosahedra, which have have a Mackay icosahedral core but with most of the surface atoms in hexagonal close-packed positions. Using a many-body glue potential for lead, we identify two icosahedral structures in this family which have the lowest energies of any known structure in the size range from 900 to 15000 lead atoms. We show that these structures are stabilized by a feature of the many-body glue part of the interatomic potential.Comment: 9 pages, 8 figure
    • …
    corecore