57 research outputs found

    Changes in Epigaeic Ant Assemblage Structure in the Amazon during Successional Processes after Bauxite Mining

    Get PDF
    Environmental impact studies often involve monitoring and using bioindicators to evaluate the restoration stage of impacted areas. We aimed to assess ant assemblages’ response to the ecological succession of previously disturbed areas in the Brazilian Amazon. We sampled epigeic ant assemblages in five bauxite mining areas, representing different restoration stages, and compared them with two pristine areas. We also compared trends in species richness at the same mine site investigated 14 years earlier. Ten pitfall traps and four Winkler samples of litter were taken along a 100-m transect in each area. We expected that ant species richness would increase with the amelioration in habitat condition (i.e., environmental surrogates of ecological succession, including litter depth, soil penetrability, the circumference of trees, the distance of trees to adjacent trees, and percentage of ground cover). We also compared the efficacy of both sampling methods. Due to more significant sampling effort, pitfall traps captured more ant species than Winkler sacks. However, Winkler samples’ addition allowed the collection of more cryptic species than by pitfall traps alone. We sampled a total of 129 ant species, with increases in ant species richness in more mature rehabilitation. Nevertheless, similarity analysis indicated a significant difference between ant assemblages of rehabilitated areas and pristine ones. Assemblages differed mainly by the presence of specialist and rare species, found only in pristine plots. Rehabilitated areas exhibited a significant increase in tree circumference as they reached more ecologically advanced stages, which contributed to increasing ant species richness. These trends and comparison with the earlier study indicate that although there are favorable increases in ant species richness, in terms of species composition, rehabilitated areas were far from achieving an ant assemblage composition or environmental status that closely resembles pristine areas

    Biodiversity consequences of land-use change and forest disturbance in the Amazon:a multi-scale assessment using ant communities

    Get PDF
    Quantifying and understanding the main drivers of biodiversity responses to human disturbances at multiple scales is key to foster effective conservation plans and management systems. Here we report on a detailed regional assessment of the response of ant communities to land-use change and forest disturbance in the Brazilian Amazon. We aimed to explore the effects of land-use intensification at both site and landscape scales, examining variation in ant species richness and composition, and asking which set of environmental variables best predict observed patterns of diversity. We sampled 192 sites distributed across 18 landscapes (each 50 km2) in Paragominas, eastern Brazilian Amazon, covering ca. 20,000 km2. We sampled from undisturbed primary forest through varyingly disturbed primary forests, secondary forests, pastures and mechanised agriculture, following a gradient of decreasing total aboveground biomass. Irrespective of forest disturbance class, ant species richness was almost twice as high in forests when compared to production areas. In contrast, ant species composition showed continuous variation from primary forest to intensive agriculture, following a gradient of aboveground biomass. Ant species richness at all spatial scales increased with primary forest cover in the surrounding landscapes. We highlight the limited value of species richness as an indicator of changes in habitat quality, reinforcing calls to consider species composition in assessments of forest disturbance. Taken together, our results reveal the unique biodiversity value of undisturbed primary forests, but also show that disturbed primary forests and secondary forests have high conservation value, and thus play an important role in regional conservation planning

    How pervasive is biotic homogenization in human‐modified tropical forest landscapes?

    Get PDF
    Land-cover change and ecosystem degradation may lead to biotic homogenization, yet our understanding of this phenomenon over large spatial scales and different biotic groups remains weak. We used a multi-taxa dataset from 335 sites and 36 heterogeneous landscapes in the Brazilian Amazon to examine the potential for landscape-scale processes to modulate the cumulative effects of local disturbances. Biotic homogenization was high in production areas but much less in disturbed and regenerating forests, where high levels of among-site and among-landscape β-diversity appeared to attenuate species loss at larger scales. We found consistently high levels of β-diversity among landscapes for all land cover classes, providing support for landscape-scale divergence in species composition. Our findings support concerns that β-diversity has been underestimated as a driver of biodiversity change and underscore the importance of maintaining a distributed network of reserves, including remaining areas of undisturbed primary forest, but also disturbed and regenerating forests, to conserve regional biota

    How pervasive is biotic homogenization in human-modified tropical forest landscapes?

    Get PDF
    Abstract Land-cover change and ecosystem degradation may lead to biotic homogenization, yet our understanding of this phenomenon over large spatial scales and different biotic groups remains weak. We used a multi-taxa dataset from 335 sites and 36 heterogeneous landscapes in the Brazilian Amazon to examine the potential for landscape-scale processes to modulate the cumulative effects of local disturbances. Biotic homogenization was high in production areas but much less in disturbed and regenerating forests, where high levels of among-site and among-landscape b-diversity appeared to attenuate species loss at larger scales. We found consistently high levels of b-diversity among landscapes for all land cover classes, providing support for landscape-scale divergence in species composition. Our findings support concerns that b-diversity has been underestimated as a driver of biodiversity change and underscore the importance of maintaining a distributed network of reserves, including remaining areas of undisturbed primary forest, but also disturbed and regenerating forests, to conserve regional biota

    Integrated terrestrial-freshwater planning doubles conservation of tropical aquatic species

    Get PDF
    Conservation initiatives overwhelmingly focus on terrestrial biodiversity, and little is known about the freshwater cobenefits of terrestrial conservation actions. We sampled more than 1500 terrestrial and freshwater species in the Amazon and simulated conservation for species from both realms. Prioritizations based on terrestrial species yielded on average just 22% of the freshwater benefits achieved through freshwater-focused conservation. However, by using integrated cross-realm planning, freshwater benefits could be increased by up to 600% for a 1% reduction in terrestrial benefits. Where freshwater biodiversity data are unavailable but aquatic connectivity is accounted for, freshwater benefits could still be doubled for negligible losses of terrestrial coverage. Conservation actions are urgently needed to improve the status of freshwater species globally. Our results suggest that such gains can be achieved without compromising terrestrial conservation goals

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation

    Get PDF
    © 2016 Macmillan Publishers Limited. All rights reserved. Concerted political attention has focused on reducing deforestation, and this remains the cornerstone of most biodiversity conservation strategies. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes. These disturbances occur both within forests, including selective logging and wildfires, and at the landscape level, through edge, area and isolation effects. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69-80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil's Forest Code, resulted in a 39-54% loss of conservation value: 96-171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará's strictly protected areas is equivalent to the loss of 92,000-139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems

    Outcomes of elective liver surgery worldwide: a global, prospective, multicenter, cross-sectional study

    Get PDF
    Background: The outcomes of liver surgery worldwide remain unknown. The true population-based outcomes are likely different to those vastly reported that reflect the activity of highly specialized academic centers. The aim of this study was to measure the true worldwide practice of liver surgery and associated outcomes by recruiting from centers across the globe. The geographic distribution of liver surgery activity and complexity was also evaluated to further understand variations in outcomes. Methods: LiverGroup.org was an international, prospective, multicenter, cross-sectional study following the Global Surgery Collaborative Snapshot Research approach with a 3-month prospective, consecutive patient enrollment within January–December 2019. Each patient was followed up for 90 days postoperatively. All patients undergoing liver surgery at their respective centers were eligible for study inclusion. Basic demographics, patient and operation characteristics were collected. Morbidity was recorded according to the Clavien–Dindo Classification of Surgical Complications. Country-based and hospital-based data were collected, including the Human Development Index (HDI). (NCT03768141). Results: A total of 2159 patients were included from six continents. Surgery was performed for cancer in 1785 (83%) patients. Of all patients, 912 (42%) experienced a postoperative complication of any severity, while the major complication rate was 16% (341/2159). The overall 90-day mortality rate after liver surgery was 3.8% (82/2,159). The overall failure to rescue rate was 11% (82/ 722) ranging from 5 to 35% among the higher and lower HDI groups, respectively. Conclusions: This is the first to our knowledge global surgery study specifically designed and conducted for specialized liver surgery. The authors identified failure to rescue as a significant potentially modifiable factor for mortality after liver surgery, mostly related to lower Human Development Index countries. Members of the LiverGroup.org network could now work together to develop quality improvement collaboratives
    corecore