10 research outputs found

    Counting Oceanians of Non-European, Non-Asian Descent (ONENA) in the South Pacific to make them count in global health

    Get PDF
    Several diseases and vulnerabilities associated with genetic or microbial factors are more frequent among populations of Oceanian, Non-European, Non-Asian descent (ONENA). ONENA are specific and have long been isolated geographically. To our knowledge, there are no published official, quantitative, aggregated data on the populations impacted by these excess vulnerabilities in Oceania. We searched official census reports for updated estimates of the total population for each of the Pacific Island Countries and Territories (including Australia) and the US State of Hawaii, privileging local official statistical or censual sources. We multiplied the most recent total population estimate by the cumulative percentage of the ONENA population as determined in official reports. Including Australia and the US State of Hawaii, Oceania counts 27 countries and territories, populated in 2016 by approximately 41 M inhabitants (17 M not counting Australia) among which approximately 12.5 M (11.6 M not counting Australia) consider themselves of entire or partial ONENA ancestry. Specific genetic and microbiome traits of ONENA may be unique and need further investigation to adjust risk estimates, risk prevention, diagnostic and therapeutic strategies, to the benefit of populations in the Pacific and beyond

    Repeated Anodal Transcranial Direct Current Stimulation (RA-tDCS) over the Left Frontal Lobe Increases Bilateral Hippocampal Cell Proliferation in Young Adult but Not Middle-Aged Female Mice

    No full text
    International audienceRepeated anodal transcranial direct current stimulation (RA-tDCS) is a neuromodulatory technique consisting of stimulating the cerebral cortex with a weak electric anodal current in a noninvasive manner. RA-tDCS over the dorsolateral prefrontal cortex has antidepressant-like properties and improves memory both in humans and laboratory animals. However, the mechanisms of action of RA-tDCS remain poorly understood. Since adult hippocampal neurogenesis is thought to be involved in the pathophysiology of depression and memory functioning, the purpose of this work was to evaluate the impact of RA-tDCS on hippocampal neurogenesis levels in mice. RA-tDCS was applied for 20 min per day for five consecutive days over the left frontal cortex of young adult (2-month-old, high basal level of neurogenesis) and middle-aged (10-month-old, low basal level of neurogenesis) female mice. Mice received three intraperitoneal injections of bromodeoxyuridine (BrdU) on the final day of RA-tDCS. The brains were collected either 1 day or 3 weeks after the BrdU injections to quantify cell proliferation and cell survival, respectively. RA-tDCS increased hippocampal cell proliferation in young adult female mice, preferentially (but not exclusively) in the dorsal part of the dentate gyrus. However, the number of cells that survived after 3 weeks was the same in both the Sham and the tDCS groups. This was due to a lower survival rate in the tDCS group, which suppressed the beneficial effects of tDCS on cell proliferation. No modulation of cell proliferation or survival was observed in middle-aged animals. Our RA-tDCS protocol may, therefore, influence the behavior of naĂŻve female mice, as we previously described, but its effect on the hippocampus is only transient in young adult animals. Future studies using animal models for depression in male and female mice should provide further insights into RA-tDCS detailed age-and sex-dependent effects on hippocampal neurogenesis
    corecore