6 research outputs found

    Acoustic Detection Of The Magnetocaloric Effect: Application To Gd And Gd5.09 Ge2.03 Si1.88

    Get PDF
    In this paper we present a simple method for the determination of the total magnetocaloric effect based on the acoustic detection of the adiabatic temperature rise caused by the application of an ac magnetic field of small amplitude. The continuous scanning of a superimposed dc magnetic field allows, by numerical integration, the determination of large temperature variations caused by magnetic field steps from zero to tens of kOe. Absolute values of temperature rise are easily acquired after the calibration of the microphone signal using an appropriate reference sample. Once the calibration is done, no further information about the sample's thermal properties is necessary since the measured signal is directly proportional to the temperature variation. Measurements were made in Gd and Gd5.09 Ge2.03 Si1.88 samples in the temperature range from 240 to 320 K. The technique shows to be suitable for the investigation of materials undergoing both purely magnetic phase transitions, as in the case of Gd, and magnetic-crystallographic first-order ones, as observed for Gd5.09 Ge2.03 Si1.88. Besides the ability to determine the temperature variation due to a large magnetic field step through the continuous scanning of the magnetic field, the technique is also very suitable for measuring the magnetocaloric effect under very small magnetic field steps since it has sensitivity below millikelvin. Moreover, it is able to detect temperature variations in very small amount of sample, leading to its potential application in magnetocaloric thin films. © 2009 The American Physical Society.8013Foldeaki, M., Schnelle, W., Gmelin, E., Benard, P., Koszegi, B., Giguere, A., Chahine, R., Bose, T.K., (1997) J. Appl. Phys., 82, p. 309. , 10.1063/1.365813Pecharsky, V.K., Gschneidner, Jr.K.A., (1999) J. Appl. Phys., 86, p. 565. , 10.1063/1.370767Gopal, B.R., Chahine, R., Bose, T.K., (1997) Rev. Sci. Instrum., 68, p. 1818. , 10.1063/1.1147999Pecharsky, V.K., Gschneidner, Jr.K.A., (1999) J. Magn. Magn. Mater., 200, p. 44. , 10.1016/S0304-8853(99)00397-2Pecharsky, V.K., Gschneidner, Jr.K.A., (1997) Phys. Rev. Lett., 78, p. 4494. , 10.1103/PhysRevLett.78.4494Otowski, W., Glorieux, C., Hofman, R., Thoen, J., (1993) Thermochim. Acta, 218, p. 123. , 10.1016/0040-6031(93)80416-8Gopal, B.R., Chahine, R., Földeàki, M., Bose, T.K., (1995) Rev. Sci. Instrum., 66, p. 232. , 10.1063/1.1145264Rosencwaig, A., Gersho, A., (1976) J. Appl. Phys., 47, p. 64. , 10.1063/1.322296Pecharsky, V.K., Gschneidner, Jr.K.A., (2001) Adv. Mater., 13, p. 683. , 10.1002/1521-4095(200105)13:93.0.CO;2-OVon Ranke, P.J., De Oliveira, N.A., Gama, S., (2004) J. Magn. Magn. Mater., 277, p. 78. , 10.1016/j.jmmm.2003.10.013Carvalho, A.M.G., Alves, C.S., Campos, A., Coelho, A.A., Gama, S., Gandra, F.C.G., Von Ranke, P.J., Oliveira, N.A., (2005) J. Appl. Phys., 97, pp. 10M320. , 10.1063/1.1860932Pecharsky, A.O., Gschneidner, Jr.K.A., Pecharsky, V.K., (2003) J. Magn. Magn. Mater., 267, p. 60. , 10.1016/S0304-8853(03)00305-6Gama, S., Alves, C.S., Coelho, A.A., Ribeiro, C.A., Persiano, A.I.C., Silva, D., (2004) J. Magn. Magn. Mater., 272-276, p. 848. , 10.1016/j.jmmm.2003.12.1260Pires, M.J.M., Carvalho, A.M.G., Gama, S., Da Silva, E.C., Coelho, A.A., Mansanares, A.M., (2005) Phys. Rev. B, 72, p. 224435. , 10.1103/PhysRevB.72.224435Glorieux, C., Thoen, J., Bednarz, G., White, M.A., Geldart, D.J.W., (1995) Phys. Rev. B, 52, p. 12770. , 10.1103/PhysRevB.52.12770Bednarz, G., Geldart, D.J.W., White, M.A., (1993) Phys. Rev. B, 47, p. 14247. , 10.1103/PhysRevB.47.14247Yu. Dan'Kov, S., Tishin, A.M., Pecharsky, V.K., Gschneidner, Jr.K.A., (1998) Phys. Rev. B, 57, p. 3478. , 10.1103/PhysRevB.57.3478Glorieux, C., Caerels, J., Thoen, J., (1996) J. Appl. Phys., 80, p. 3412. , 10.1063/1.363208Pecharsky, V.K., Gschneidner, Jr.K.A., (1999) J. Appl. Phys., 86, p. 6315. , 10.1063/1.371734Giguere, A., Foldeaki, M., Ravi Gopal, B., Chahine, R., Bose, T.K., Frydman, A., Barclay, J.A., (1999) Phys. Rev. Lett., 83, p. 2262. , 10.1103/PhysRevLett.83.2262Yue, M., Zhang, J., Zeng, H., Chen, H., Liu, X.B., (2006) J. Appl. Phys., 99, pp. 08Q104. , 10.1063/1.2158971Tocado, L., Palacios, E., Burriel, R., (2006) J. Therm Anal. Calorim., 84, p. 213. , 10.1007/s10973-005-7180-zGschneidner, Jr.K.A., Pecharsky, V.K., Brück, E., Duijn, H.G.M., Levin, E.M., (2000) Phys. Rev. Lett., 85, p. 4190. , 10.1103/PhysRevLett.85.419

    Angular Dependence Of The Photothermally Modulated Magnetic Resonance In Gd Thin Films

    No full text
    In this paper we use electron spin resonance and photothermally modulated magnetic resonance techniques to investigate gadolinium thin films as a function of the orientation of the film surface with respect to the external magnetic field and of the temperature, around the magnetic phase transition temperature. We observe that, in the ferromagnetic phase, the resonance line is shifted up to higher external magnetic fields when the angle between the film surface and the field increases, revealing the magnetic anisotropy of the sample. At the same time, when the temperature is augmented to values higher than the phase transition temperature, the external field of the resonance collapses back to the expected value in the paramagnetic phase for all orientations. We also demonstrated that, even for the perpendicular orientation (magnetic field perpendicular to the sample surface), the photothermally modulated magnetic resonance signal is maximized near the magnetic phase transition temperature. Furthermore, in the ferromagnetic phase the photothermally modulated magnetic resonance intensity is very sensitive to the orientation, showing a significant enhancement in the perpendicular direction. © 2012 Springer-Verlag Berlin Heidelberg.1122403409Orth, T., Netzelmann, U., Pelzl, J., (1988) Appl. Phys. Lett., 53, p. 1979. , 1988ApPhL.53.1979O 10.1063/1.100338Romano, J.A., Mansanares, A.M., Da Silva, E.C., Vargas, H., (1994) J. Phys., 4. , C7-667Meckenstock, R., Spodding, D., Pelzl, J., (2002) J. Magn. Mater., 240, p. 83. , 2002JMMM.240.83M 10.1016/S0304-8853(01)00754-5Poole, Jr.C.P., (1983) Electron Spin Resonance, , Wiley New YorkAbragam, A., Bleaney, B., (1986) Electron Paramagnetic Resonance of Transition Ions, , Dover New YorkSoffner, M.E., Tedesco, J.C.G., Mansanares, A.M., Gadioli, G.Z., Rouxinol, F.P., De Moraes, M.A.B., Da Silva, E.C., (2010) J. Phys. Conf. Ser., 214. , 012092 2010JPhCS.214a2092S 10.1088/1742-6596/214/1/012092Soffner, M.E., Tedesco, J.C.G., Pedrochi, F., Gadioli, G.Z., De Moraes, M.A.B., Guimarães, A.O., Da Silva, E.C., Mansanares, A.M., (2012) Thin Solid Films, 520, p. 3634. , 2012TSF.520.3634S 10.1016/j.tsf.2011.12.042Pecharsky, V.K., Gschneider, Jr.K.A., (1997) Phys. Rev. Lett., 78, p. 4494. , 1997PhRvL.78.4494P 10.1103/PhysRevLett.78.4494Foldeaki, M., Schnelle, W., Gmelin, E., Bernard, P., Koszegi, B., Giguere, A., Chahine, R., Bose, T.K., (1997) J. Appl. Phys., 82, p. 309. , 1997JAP.82.309F 10.1063/1.365813Tishin, A.M., Spichkin, Y.I., (2003) The Magnetocaloric Effect and Its Applications, , Inst. Phys. Ser. Condens. Matter Phys. Institute of Physics Bristol 10.1887/0750309229Guimarães, A.O., Soffner, M.E., Mansanares, A.M., Coellho, A.A., Carvalho, A.M.G., Pires, M.J.M., Gama, S., Da Silva, E.C., (2009) Phys. Rev. B, 80. , 134406 2009PhRvB.80m4406G 10.1103/PhysRevB.80.134406Guimarães, A.O., Soffner, M.E., Mansanares, A.M., Coellho, A.A., Carvalho, A.M.G., Pires, M.J.M., Gama, S., Da Silva, E.C., (2010) J. Appl. Phys., 107. , 073524 2010JAP.107g3524G 10.1063/1.3357375Soffner, M.E., Mansanares, A.M., Gandra, F.C.G., Coelho, A.A., Gama, S., Carvalho, A.M.G., Pires, M.J.M., Da Silva, E.C., (2010) J. Phys. D, Appl. Phys., 43. , 445002 2010JPhD.43.5002S 10.1088/0022-3727/43/44/445002Gadioli, G.Z., Rouxinol, F.P., Gelamo, R.V., Dos Santos, A.O., Cardoso, L.P., De Moraes, M.A.B., (2008) J. Appl. Phys., 103. , 093916 2008JAP.103i3916G 10.1063/1.2838462Zakeri, Kh., Lindner, J., Barsukov, I., Meckenstock, R., Farle, M., Von Hörsten, U., Wende, H., Frait, Z., (2007) Phys. Rev. B, 76. , 104416 2007PhRvB.76j4416Z 10.1103/PhysRevB.76.104416Lindner, J., Barsukov, I., Raeder, C., Hassel, C., Posth, O., Meckenstock, R., Landeros, P., Mills, D.L., (2009) Phys. Rev. B, 80. , 224421 2009PhRvB.80v4421L 10.1103/PhysRevB.80.224421Rezende, S.M., Moura, J.A.S., De Aguiar, F.M., (1994) Phys. Rev. B, 49, p. 15105. , 1994PhRvB.4915105R 10.1103/PhysRevB.49.15105Landau, L.D., Lifshitz, E.M., (1935) Phys. Z. Sowjetunion, 8, p. 153. , 0012.28501Kittel, C., (1947) Phys. Rev., 71, p. 270. , 1947PhRv.71.270K 10.1103/PhysRev.71.270.2Kittel, C., (1948) Phys. Rev., 73, p. 155. , 1948PhRv.73.155K 10.1103/PhysRev.73.155Mansanares, A.M., Fournier, D., Boccara, A.C., (1993) Electron. Lett., 29 (23), p. 2045. , 10.1049/el:19931366Bernal-Alvarado, J., Mansanares, A.M., Da Silva, E.C., Moreira, S.G.C., (2003) Rev. Sci. Instrum., 74 (1), p. 697. , 2003RScI.74.697B 10.1063/1.1517726Glorieux, C., Thoen, J., Bednarz, G., White, M.A., Geldart, D.J.W., (1995) Phys. Rev. B, 52, p. 12770. , 1995PhRvB.5212770G 10.1103/PhysRevB.52.12770Lide, D.R., (1991) CRC Handbook of Chemistry and Physics, , 72 CRC Press Boca Rato

    Large Magnetocaloric Effect And Refrigerant Capacity Near Room Temperature In As-cast Gd5ge2si2-xsnx Compounds

    No full text
    Large values of isothermal entropy change (ΔST) and refrigerant capacity have been found in Gd5Ge2Si 2-xSnx compounds. Values of the order of 20 J kg -1 K-1 for -ΔST were obtained in as-cast samples when submitted to a magnetic field variation of 2 T. First-order-magneto-structural transition is induced by the substitution of silicon by tin and it is shifted to lower temperatures with the tin content. It means that the magnetocaloric effect on this series can be properly tuned to a specific practical thermodynamic cycle, including near room temperature range. © 2013 AIP Publishing LLC.10219Gschneidner Jr., K.A., Pecharsky, V.K., (2000) Annu. Rev. Mater. Sci., 30, pp. 387-429. , 10.1146/annurev.matsci.30.1.387Pecharsky, V.K., Gschneidner Jr., K.A., (1997) Phys. Rev. Lett., 78, p. 4494. , 10.1103/PhysRevLett.78.4494Wang, H.B., Altounian, Z., Ryan, D.H., (2002) Phys. Rev. B, 66, p. 214413. , 10.1103/PhysRevB.66.214413Ryan, D.H., Elouneg-Jamróz, M., Van Lierop, J., Altounian, Z., Wang, H.B., (2003) Phys. Rev. Lett., 90 (11), p. 117202. , 10.1103/PhysRevLett.90.117202Campoy, J.C.P., Plaza, E.J.R., Magnus, A., Carvalho, G., Coelho, A.A., Gama, S., Von Ranke, P.J., (2004) J. Magn. Magn. Mater., 272-276, p. 2375. , 10.1016/j.jmmm.2003.12.1010Wang, H.B., Altounian, Z., Ryan, D.H., (2004) J. Phys.: Condens. Matter, 16, p. 3053. , 10.1088/0953-8984/16/18/006Zhang, T., Chen, Y., Tang, Y., Tu, M., (2006) J. Alloys Compd., 422, p. 25. , 10.1016/j.jallcom.2005.11.077Campoy, J.C.P., Plaza, E.J.R., Nascimento, F.C., Coelho, A.A., Pereira, M.C., Fabris, J.D., Raposo, M.T., Gama, S., (2007) J. Magn. Magn. Mater., 316, p. 368. , 10.1016/j.jmmm.2007.03.023Provenzano, V., Zhang, T., Shapiro, A., Chen, Y.G., Shull, R.D., (2008) IEEE Trans. Magn., 44 (11), p. 3048. , 10.1109/TMAG.2008.2002789Carvalho, A.M.G., Coelho, A.A., Von Ranke, P.J., Alves, C.S., (2011) J. Alloys Compd., 509, p. 3452. , 10.1016/j.jallcom.2010.12.088Pecharsky, A.O., Gschneidner Jr., K.A., Pecharsky, V.K., (2003) J. Appl. Phys., 93 (8), p. 4722. , 10.1063/1.1558210Alves, C.S., Gama, S., Coelho, A.D.A., Plaza, E.J.R., Magnus Carvalho G, A., Cardoso, L.P., Persiano, A.C., (2004) Mater. Res., 7 (4), p. 535. , 10.1590/S1516-14392004000400005Belo, J.H., Pereira, A.M., Ventura, J., Oliveira, G.N.P., Araújo, J.P., Tavares, P.B., Fernandes, L., Ibarra, M.R., (2012) J. Alloys Compd., 529, p. 89. , 10.1016/j.jallcom.2012.02.164Pecharsky, V.K., Gschneidner Jr., K.A., (1997) J. Alloys Compd., 260, p. 98. , 10.1016/S0925-8388(97)00143-6Pecharsky, V.K., Gschneidner Jr., K.A., (1997) Appl. Phys. Lett., 70 (24), p. 3299. , 10.1063/1.119206Zhang, T., Chen, Y., Tang, Y., (2007) J. Phys. D: Appl. Phys., 40, p. 5778. , 10.1088/0022-3727/40/18/040Manekar, M., Roy, S.B., (2011) J. Phys. D: Appl. Phys., 44, p. 242001. , 10.1088/0022-3727/44/24/242001Katagiri, K., Nakamura, K., Wada, H., (2013) J. Alloys Compd., 553, p. 286. , 10.1016/j.jallcom.2012.11.127Von Ranke, P.J., Nóbrega, E.P., De Oliveira, I.G., Gomes, A.M., Sarthour, R.S., (2001) Phys. Rev. B, 63, p. 184406. , 10.1103/PhysRevB.63.18440

    Anisotropic Magnetocaloric Effect In Gadolinium Thin Films: Magnetization Measurements And Acoustic Detection

    No full text
    In this letter, it is demonstrated the ability of the magnetoacoustic technique in detecting the magnetocaloric effect in gadolinium thin films (1.0 μm and 3.0 μm thick), which is not accessible through conventional temperature sensors because of the reduced mass of the samples. The method, which detects the direct effect of the sample temperature variation, proved to be sensitive to the anisotropy of the films, making possible for the investigation of the anisotropic magnetocaloric effect. Magnetization measurements were also carried out, and from these measurements both the adiabatic temperature and the isothermal entropy variations were calculated. The acoustically detected magnetocaloric effect shows very good agreement with these calculations. © 2013 AIP Publishing LLC.11416Pecharsky, V.K., Gschneidner, Jr.K.A., (1999) J. Magn. Magn. Mater., 200, p. 44. , 10.1016/S0304-8853(99)00397-2Pecharsky, V.K., Gschneidner, Jr.K.A., (1997) Phys. Rev. Lett., 78, p. 4494. , 10.1103/PhysRevLett.78.4494Gadioli, G.Z., Rouxinol, F.P., Gelamo, R.V., Santos, A.O., Cardoso, L.P., Moraes, M.A.B., (2008) J. Appl. Phys., 103, p. 093916. , 10.1063/1.2838462Soffner, M.E., Guimarães, A.O., Da Silva, E.C., Mansanares, A.M., (2013) Appl. Phys. A, 112, pp. 403-409. , 10.1007/s00339-012-7414-4Guimarães, A.O., Soffner, M.E., Mansanares, A.M., Coelho, A.A., Carvalho, A.M.G., Pires, M.J.M., Gama, S., Da Silva, E.C., (2009) Phys. Rev. B, 80, p. 134406. , 10.1103/PhysRevB.80.134406Guimarães, A.O., Soffner, M.E., Mansanares, A.M., Coelho, A.A., Carvalho, A.M.G., Pires, M.J.M., Gama, S., Da Silva, E.C., (2010) J. Appl. Phys., 107, p. 073524. , 10.1063/1.3357375Soffner, M.E., Mansanares, A.M., Gandra, F.C.G., Coelho, A.A., Gama, S., Carvalho, A.M.G., Pires, M.J.M., Da Silva, E.C., (2010) J. Phys. D: Appl. Phys., 43, p. 445002. , 10.1088/0022-3727/43/44/445002Soffner, M.E., Tedesco, J.C.G., Pedrochi, F., Gadioli, G.Z., De Moraes, M.A.B., Guimarães, A.O., Da Silva, E.C., Mansanares, A.M., (2012) Thin Solid Films, 520, pp. 3634-3640. , 10.1016/j.tsf.2011.12.042Pecharsky, V.K., Gschneidner, Jr.K.A., (1999) J. Appl. Phys., 86, p. 565. , 10.1063/1.370767Glorieux, C., Thoen, J., Bednarz, G., White, M.A., Geldart, D.J.W., (1995) Phys. Rev. B, 52, p. 12770. , 10.1103/PhysRevB.52.12770Bahl, C.R.H., Nielsen, K.K., (2009) J. Appl. Phys., 105, p. 013916. , 10.1063/1.3056220Foldeaki, M., Chahine, R., Bose, T.K., (1995) J. Appl. Phys., 77 (7), p. 3528. , 10.1063/1.358648Miller, C.W., Williams, D.V., Bingham, N.S., Srikanth, H., (2010) J. Appl. Phys., 107, pp. 09A903. , 10.1063/1.3335515Kirby, B.J., Lau, J.W., Williams, D.V., Bauer, C.A., Miller, C.W., (2011) J. Appl. Phys., 109, p. 063905. , 10.1063/1.3555101Touloukian, Y.S., Powell, R.W., Ho, C.Y., Nicolaou, M.C., (1973) Thermophysical Properties of Matter: Thermal Diffusivity, , (IFI/Plenum, New York, Washington), Vol. 1

    Erratum: Large Magnetocaloric Effect And Refrigerant Capacity Near Room Temperature In As-cast Gd5ge2si2-xsn X Compounds (applied Physics Letters (2013) 102 (192410))

    No full text
    [No abstract available]1042Carvalho, A.M.G., Tedesco, J.C.G., Pires, M.J.M., Soffner, M.E., Guimarães, A.O., Mansanares, A.M., Coelho, A.A., Large magnetocaloric effect and refrigerant capacity near room temperature in as-cast Gd5Ge2Si2 -xSnx compounds (2013) Appl. Phys. Lett., 102, p. 192410. , 10.1063/1.480697

    Photothermally Modulated Magnetic Resonance Applied To The Study Of The Magnetic Phase Transition In Gadolinium Thin Films

    No full text
    We explore the photothermally modulated magnetic resonance technique to investigate gadolinium thin films deposited on fused quartz substrate, as a function of thickness and thermal treatment, around the magnetic phase transition temperature. It has been observed that the maximum amplitude of the photothermally modulated magnetic resonance (PM-MR) signal takes place near the phase transition temperature, similarly to the magnetocaloric effect, for which Gd has been the prototype material. The reason is that both depend on the temperature derivative of the magnetization, which maximizes at the phase transition. Besides, there is a narrowing of transition with thermal treatment, confirming that thermal treatment stabilizes the film structure. For frequency scan measurements, the heat diffusion in a two-layer system was considered, and a depth profile study was carried out in order to investigate heterogeneities along the film thickness. From the PM-MR response as a function of the modulation frequency it was possible to estimate the thermal properties of the Gd film. Magnetization, X-ray and electron spin resonance measurements were used to complement the analysis and support the conclusions. © 2011 Elsevier B.V. All rights reserved.520936343640Ohring, M., (1991) The Materials Science of Thin Films, , Academic Press New YorkPrutton, M., (1964) Thin Ferromagnetic Films, , Butterworth WashingtonPoole, Jr.C.P., (1983) Electron Spin Resonance, , John Wiley & Sons New YorkAbragam, A., Bleaney, B., (1986) Electron Paramagnetic Resonance of Transitions Ions, , Dover New YorkOrth, T., Netelmann, U., Pelzl, J., (1988) Appl. Phys. Lett., 53, p. 1979Romano, J.A., Mansanares, A.M., Da Silva, E.C., Vargas, H., (1994) J. Phys., 4, pp. C7-667Meckenstock, R., Spodding, D., Pelzl, J., (2002) J. Magn. Mater., 240, p. 83Pecharsky, V.K., Gschneider, Jr.K.A., (1997) Phys. Rev. Lett., 78, p. 4494Foldeaki, M., Schnelle, W., Gmelin, E., Bernard, P., Koszegi, B., Giguere, A., Chahine, R., Bose, T.K., (1997) J. Appl. Phys., 82, p. 309Tishin, A.M., Spichkin, Y.I., (2003) The Magnetocaloric Effect and Its Applications, , Institute of Physics Series in Condensed Matter Physics BristolMorelli, D.T., Mance, A.M., Mantese, J.M., Micheli, A.L., (1996) J. Appl. Phys., 79, p. 373Gadioli, G.Z., Rouxinol, F.P., Gelamo, R.V., Dos Santos, A.O., Cardoso, L.P., De Moraes, M.A.B., (2008) J. Appl. Phys., 103, p. 093916Recarte, V., Pérez-Landazábal, J.I., Sánchez- Alárcos, V., Chemenko, V.A., Ohtsuka, M., (2009) Appl. Phys. Lett., 95, p. 141908Solzi, M., Pernechele, C., Ghidini, M., Natali, M., Bolzan, M., (2010) J. Magn. Magn. Mater., 322, p. 1565Pelzl, J., Netzelmann, U., (1989) Topics in Currents Physics: Photoacoustic, Photothermal and Photochemical Processes at Surfaces and in Thin Films, p. 313. , P. Hess, Springer-Verlag BerlinGuimarães, A.O., Soffner, M.E., Mansanares, A.M., Coellho, A.A., Magnus, A., Carvalho, G., Pires, M.J.M., Da Silva, E.C., (2009) Phys. Rev. B, 80, p. 134406Guimarães, A.O., Soffner, M.E., Mansanares, A.M., Coellho, A.A., Magnus, A., Carvalho, G., Pires, M.J.M., Da Silva, E.C., (2010) J. Appl. Phys., 107, p. 073524Soffner, M.E., Tedesco, J.C.G., Mansanares, A.M., Gadioli, G.Z., Rouxinol, F.P., De Moraes, M.A.B., Da Silva, E.C., (2010) J. Phys. Conf. Ser., 214, p. 012092Nakamura, O., Baba, K., Ishii, H., Takeda, T., (1988) J. Appl. Phys., 64, p. 3614Farle, M., Baberschke, K., (1987) Phys. Rev. Lett., 58, p. 511Bugardt, P., Seehra, M.S., (1977) Phys. Rev. B, 16, p. 1802Chiba, Y., Nakamura, A., (1970) J. Phys. Soc. Jpn, 29, p. 792Freitas, L.R., Mansanares, A.M., Da Silva, E.C., (2003) Rev. Sci. Instrum., 74, p. 735Glorieux, C., Thoen, J., Bednarz, G., White, M.A., Geldart, D.J.W., (1995) Phys. Rev. B, 52, p. 12770Lide, D.R., (1991) CRC Handbook of Chemistry and Physics, , 72nd ed. CRC PressPetrakian, J.P., Ahmed Mokhtar, N., Fraisse, R., (1977) J. Phys. F: Met. Phys., 7, p. 2431Almond, D.P., Patel, P.M., (1996) Photothermal Science and Techniques, , Chapman & Hall LondonTouloukian, Y.S., Buyco, E.H., (1970) Thermophysical Properties of Matter, , IFI/Plenum New York-Washingto
    corecore