500 research outputs found
Relationship between margin distance and local recurrence among patients undergoing wedge resection for small (≤2 cm) non–small cell lung cancer
ObjectiveSuccessful pulmonary wedge resection for early-stage non–small cell lung cancer requires a pathologically confirmed negative margin. To date, however, no clear evidence is available regarding whether an optimal margin distance, defined as the distance from the primary tumor to the closest resection margin, exists. Toward addressing this gap, we investigated the relationship between the margin distance and local recurrence risk.MethodsWe reviewed all adult patients who had undergone wedge resection for small (≤2 cm) non–small cell lung cancer from January 2001 to August 2011, with follow-up through to December 31, 2011. The exclusion criteria included other active noncutaneous malignancies, bronchoalveolar carcinomas, lymph node or distant metastases at diagnosis, large cell cancer, adenosquamous cancer, multiple, multifocal, and/or metastatic disease, and previous chemotherapy or radiotherapy. Using Cox regression analysis, we examined the relationship between the margin distance and interval to local recurrence, adjusting for chronic obstructive pulmonary disease, forced expiratory volume in 1 second, smoking, diabetes, tumor size, tumor location, surgeon, open versus video-assisted thoracoscopic surgery, and whether the lymph nodes were sampled.ResultsOf 557 consecutive adult patients, 479 met our inclusion criteria. The overall, unadjusted 1- and 2-year local recurrences rate was 5.7% and 11.0%, respectively. From the adjusted analyses, an increased margin distance was significantly associated with a lower risk of local recurrence (P = .033). Patients with a 10-mm margin distance had a 45% lower local recurrence risk than those with a 5-mm distance (hazard ratio, 0.55; 95% confidence interval, 0.35-0.86). Beyond 15 mm, no evidence of additional benefit was associated with an increased margin distance.ConclusionsIn wedge resection for small non–small cell lung cancer, increasing the margin distance ≤15 mm significantly decreased the local recurrence risk, with no evidence of additional benefit beyond 15 mm
Polygenic risk scores and kidney traits in the Hispanic/Latino population: The Hispanic Community Health Study/Study of Latinos
Estimated glomerular filtration rate (eGFR) is used to evaluate kidney function and determine the presence of chronic kidney disease (CKD), a highly prevalent disease in the US1,2,3 that varies among subgroups of Hispanic/Latino individuals.4,5 The polygenic risk score (PRS) is a popular method that uses large genome-wide association studies (GWASs) to provide a strong estimate of disease risk.7 However, due to the limited availability of summary statistics from GWAS meta-analyses based on Hispanic/Latino populations, PRSs can only be computed using different ancestry GWASs. The performance of eGFR PRSs derived from other GWAS reference populations for Hispanic/Latino population has not been examined. We compared PRS constructions for eGFR prediction in Hispanic/Latino individuals using GWAS-significant variants, clumping and thresholding (C&T),8 and PRS-CS,22 as well as a combination of PRSs calculated with different reference GWAS meta-analyses from European and multi-ethnic studies in Hispanic/Latino individuals from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). All eGFR PRSs were highly associated with eGFR (p < 1E−20). Additionally, eGFR PRSs were significantly associated with lower risk of prevalent CKD at visit 1 or 2 and incident CKD at visit 2, with the combined PRSs having the best performance. These PRS findings were replicated in an additional dataset of Hispanic/Latino individuals using data from the Women's Health Initiative SNP Health Association Resource (WHI-SHARe).1
Mendelian randomization of inorganic arsenic metabolism as a risk factor for hypertension- And diabetes-related traits among adults in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) cohort
Background: Hypertension and diabetes have been associated with inefficient arsenic metabolism, primarily through studies undertaken in populations exposed through drinking water. Recently, rice has been recognized as a source of arsenic exposure, but it remains unclear whether populations with high rice consumption but no known water exposure are at risk for the health problems associated with inefficient arsenic metabolism. Methods: The relationships between arsenic metabolism efficiency (% inorganic arsenic, % monomethylarsenate and % dimethylarsinate in urine) and three hypertension- and seven diabetes-related traits were estimated among 12 609 participants of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). A two-sample Mendelian randomization approach incorporated genotype-arsenic metabolism relationships from literature, and genotype-trait relationships from HCHS/SOL, with a mixed-effect linear model. Analyses were stratified by rice consumption and smoking. Results: Among never smokers with high rice consumption, each percentage point increase in was associated with increases of 1.96 mmHg systolic blood pressure (P = 0.034) and 1.85 mmHg inorganic arsenic diastolic blood pressure (P = 0.003). Monomethylarsenate was associated with increased systolic (1.64 mmHg/percentage point increase; P = 0.021) and diastolic (1.33 mmHg/percentage point increase; P = 0.005) blood pressure. Dimethylarsinate, a marker of efficient metabolism, was associated with lower systolic (-0.92 mmHg/percentage point increase; P = 0.025) and diastolic (-0.79 mmHg/percentage point increase; P = 0.004) blood pressure. Among low rice consumers and ever smokers, the results were consistent with no association. Evidence for a relationship with diabetes was equivocal. Conclusions: Less efficient arsenic metabolism was associated with increased blood pressure among never smokers with high rice consumption, suggesting that arsenic exposure through rice may contribute to high blood pressure in the Hispanic/Latino community
Social and scientific motivations to move beyond groups in allele frequencies: The TOPMed experience
For the genomics community, allele frequencies within defined groups (or “strata”) are useful across multiple research and clinical contexts. Benefits include allowing researchers to identify populations for replication or “look up” studies, enabling researchers to compare population-specific frequencies to validate findings, and facilitating assessment of variant pathogenicity in clinical contexts. However, there are potential concerns with stratified allele frequencies. These include potential re-identification (determining whether or not an individual participated in a given research study based on allele frequencies and individual-level genetic data), harm from associating stigmatizing variants with specific groups, potential reification of race as a biological rather than a socio-political category, and whether presenting stratified frequencies—and the downstream applications that this presentation enables—is consistent with participants’ informed consents. The NHLBI Trans-Omics for Precision Medicine (TOPMed) program considered the scientific and social implications of different approaches for adding stratified frequencies to the TOPMed BRAVO (Browse All Variants Online) variant server. We recommend a novel approach of presenting ancestry-specific allele frequencies using a statistical method based upon local genetic ancestry inference. Notably, this approach does not require grouping individuals by either predominant global ancestry or race/ethnicity and, therefore, mitigates re-identification and other concerns as the mixture distribution of ancestral allele frequencies varies across the genome. Here we describe our considerations and approach, which can assist other genomics research programs facing similar issues of how to define and present stratified frequencies in publicly available variant databases
Objectively measured physical activity, sedentary behavior, and genetic predisposition to obesity in U.S. Hispanics/Latinos: Results from the hispanic community health study/study of Latinos (HCHS/SOL)
Studies using self-reported data suggest a gene-physical activity interaction on obesity, yet the influence of sedentary behavior, distinct from a lack of physical activity, on genetic associations with obesity remains unclear. We analyzed interactions of accelerometer-measured moderate to vigorous physical activity (MVPA) and time spent sedentary with genetic variants on obesity among 9,645 U.S. Hispanics/Latinos. An overall genetic risk score (GRS), a central nervous system (CNS)-related GRS, and a non-CNS-related GRS were calculated based on 97 BMIassociated single nucleotide polymorphisms (SNPs). Genetic association with BMI was stronger in individuals with lower MVPA (first tertile) versus higher MVPA (third tertile) (b = 0.78 kg/m2 [SE, 0.10 kg/m2] vs. 0.39 kg/m2 [0.09 kg/m2] per SD increment of GRS; Pinteraction = 0.005), and in those with more time spent sedentary (third tertile) versus less time spent sedentary (first tertile) (b = 0.73 kg/m2 [SE, 0.10 kg/m2] vs. 0.44 kg/m2 [0.09 kg/m2]; Pinteraction = 0.006). Similar significant interaction patterns were observed for obesity risk, body fat mass, fat percentage, fat mass index, and waist circumference, but not for fat-free mass. The CNS-related GRS, but not the non-CNS-related GRS, showed significant interactions with MVPA and sedentary behavior, with effects on BMI and other adiposity traits. Our data suggest that both increasing physical activity and reducing sedentary behavior may attenuate genetic associations with obesity, although the independence of these interaction effects needs to be investigated further
A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL
In genome-wide association studies (GWAS), “generalization” is the replication of genotype-phenotype association in a population with different ancestry than the population in which it was first identified. Current practices for declaring generalizations rely on testing associations while controlling the family-wise error rate (FWER) in the discovery study, then separately controlling error measures in the follow-up study. This approach does not guarantee control over the FWER or false discovery rate (FDR) of the generalization null hypotheses. It also fails to leverage the two-stage design to increase power for detecting generalized associations. We provide a formal statistical framework for quantifying the evidence of generalization that accounts for the (in)consistency between the directions of associations in the discovery and follow-up studies. We develop the directional generalization FWER (FWERg) and FDR (FDRg) controlling r-values, which are used to declare associations as generalized. This framework extends to generalization testing when applied to a published list of Single Nucleotide Polymorphism-(SNP)-trait associations. Our methods control FWERg or FDRg under various SNP selection rules based on P-values in the discovery study. We find that it is often beneficial to use a more lenient P-value threshold than the genome-wide significance threshold. In a GWAS of total cholesterol in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), when testing all SNPs with P-values < 5 × 10-8 (15 genomic regions) for generalization in a large GWAS of whites, we generalized SNPs from 15 regions. But when testing all SNPs with P-values < 6.6 × 10-5 (89 regions), we generalized SNPs from 27 regions
Metabolome-wide association study of estimated glomerular filtration rates in Hispanics
Circulating metabolites are by-products of endogenous metabolism or exogenous sources and may inform disease states. Our study aimed to identify the source of variability in the association of metabolites with estimated glomerular filtration rate (eGFR) in Hispanics/Latinos with low chronic kidney disease prevalence by testing the association of 640 metabolites in 3,906 participants of the Hispanic Community Health Study/Study of Latinos. Metabolites were quantified in fasting serum through non-targeted mass spectrometry analysis. eGFR was regressed on inverse normally transformed metabolites in models accounting for study design and covariates. To identify the source of variation on eGFR associations, we tested the interaction of metabolites with lifestyle and clinical risk factors, and results were integrated with genotypes to identify metabolite genetic regulation. The mean age was 46 years, 43% were men, 22% were current smokers, 47% had a Caribbean Hispanic background, 19% had diabetes and the mean cohort eGFR was 96.4 ml/min/1.73 m2. We identified 404 eGFR-metabolite associations (False Discovery Rate under 0.05). Of these, 69 were previously reported, and 79 were novel associations with eGFR replicated in one or more published studies. There were significant interactions with lifestyle and clinical risk factors, with larger differences in eGFR-metabolite associations within strata of age, urine albumin to creatinine ratio, diabetes and Hispanic/Latino background. Several newly identified metabolites were genetically regulated, and variants were located at genomic regions previously associated with eGFR. Thus, our results suggest complex mechanisms contribute to the association of eGFR with metabolites and provide new insights into these associations
REDD1 Protects Osteoblast Cells from Gamma Radiation-Induced Premature Senescence
Radiotherapy is commonly used for cancer treatment. However, it often results in side effects due to radiation damage in normal tissue, such as bone marrow (BM) failure. Adult hematopoietic stem and progenitor cells (HSPC) reside in BM next to the endosteal bone surface, which is lined primarily by hematopoietic niche osteoblastic cells. Osteoblasts are relatively more radiation-resistant than HSPCs, but the mechanisms are not well understood. In the present study, we demonstrated that the stress response gene REDD1 (regulated in development and DNA damage responses 1) was highly expressed in human osteoblast cell line (hFOB) cells after γ irradiation. Knockdown of REDD1 with siRNA resulted in a decrease in hFOB cell numbers, whereas transfection of PCMV6-AC-GFP-REDD1 plasmid DNA into hFOB cells inhibited mammalian target of rapamycin (mTOR) and p21 expression and protected these cells from radiation-induced premature senescence (PS). The PS in irradiated hFOB cells were characterized by significant inhibition of clonogenicity, activation of senescence biomarker SA-β-gal, and the senescence-associated cytokine secretory phenotype (SASP) after 4 or 8 Gy irradiation. Immunoprecipitation assays demonstrated that the stress response proteins p53 and nuclear factor κ B (NFkB) interacted with REDD1 in hFOB cells. Knockdown of NFkB or p53 gene dramatically suppressed REDD1 protein expression in these cells, indicating that REDD1 was regulated by both factors. Our data demonstrated that REDD1 is a protective factor in radiation-induced osteoblast cell premature senescence
Admixture mapping identifies an amerindian ancestry locus associated with albuminuria in hispanics in the United States
Increased urine albumin excretion is highly prevalent in Hispanics/Latinos. Previous studies have found an association between urine albumin excretion and Amerindian ancestry in Hispanic/Latino populations. Admixture between racial/ ethnic groups creates long-range linkage disequilibrium between variants with different allelic frequencies in the founding populations and it can be used to localize genes. Hispanic/Latino genomes are an admixture of European, African, and Amerindian ancestries. We leveraged this admixture to identify associations between urine albumin excretion (urine albumin-to-creatinine ratio [UACR]) and genomic regions harboring variants with highly differentiated allele frequenciesamongtheancestralpopulations.Admixturemappinganalysis of 12,212HispanicCommunityHealth Study/Study of Latinos participants, using a linearmixedmodel, identified three novel genome-wide significant signals on chromosomes 2, 11, and 16. The admixture mapping signal identified on chromosome2, spanning q11.2-14.1 and notpreviously reported forUACR,isdrivenby a differencebetween Amerindian ancestry and theother twoancestries (P<5.7 × 10-5). Within this locus, two common variants located at the proapoptotic BCL2L11 gene associated with UACR: rs116907128 (allele frequency=0.14;P=1.531027) and rs586283 (Callele frequency=0.35;P=4.2×10-7). In a secondary analysis, rs116907128 accounted for most of the admixture mapping signal observed in the region. The rs116907128 variant is commonamong full-heritage Pima Indians (A allele frequency=0.54) but ismonomorphic in the 1000Genomes European and African populations. In a replication analysis using a sample of full-heritage Pima Indians, rs116907128 significantly associated with UACR (P=0.01; n=1568).Our findingsprovideevidence for thepresenceof Amerindian-specific variants influencing the variation of urine albumin excretion in Hispanics/Latinos
- …