59 research outputs found
Gender differences in renal responses to hyperglycemia and angiotensin-converting enzyme inhibition in diabetes
Gender differences in renal responses to hyperglycemia and angiotensin-converting enzyme inhibition in diabetes.BackgroundDiabetes mellitus reduces female gender-mediated protection against progression of renal disease but the mechanisms responsible for this loss of protection are unknown. The impact of gender on the diabetic hyperfiltration state has not previously been studied. Since hyperfiltration is a factor in the development of diabetic renal disease, and is influenced by hyperglycemia and renin-angiotensin system (RAS) blockade, we examined gender differences in the renal response to hyperglycemia and angiotensin-converting enzyme (ACE) inhibition in young males and females with uncomplicated type 1 diabetes mellitus.MethodsTen male and 12 female normoalbuminuric, normotensive, adolescents with type 1 diabetes mellitus were studied before ACE inhibition during clamped euglycemia and hyperglycemia, and then after 21 days treatment with enalapril (0.1 mg/kg daily × 1 week and then 0.1 mg/kg twice a day × 2 weeks).ResultsDuring clamped euglycemia, males exhibited significantly higher effective renal plasma flow (ERPF) and renal blood flow (RBF) and a lower renal vascular resistance (RVR). During clamped hyperglycemia, females exhibited reductions in ERPF and RBF, and increased RVR and filtration fraction (FF). Males exhibited no significant renal hemodynamic changes during hyperglycemia. After ACE inhibition treatment, both genders exhibited significant declines in arterial pressure, but only females displayed a reduction in glomerular filtration rate (GFR) and FF.ConclusionThe renal responses to hyperglycemia and ACE inhibition appear to differ between male and female adolescents with uncomplicated type 1 diabetes mellitus. Hyperglycemia-induced changes in RVR and FF in women may account, at least in part, for the loss of gender-based protection in diabetic renal disease
Low PTH Levels in Adolescents With Anorexia Nervosa
Introduction: Patients with anorexia nervosa (AN) experience medical complications including impaired bone metabolism, increased fracture rate, kidney stones and chronic renal failure. However, the mechanisms of such complications are not fully understood. Healthy adolescents have been shown to have higher PTH levels when compared with pre-pubertal children and adults. Given the importance of central measures of calcium and vitamin D metabolism in bone and kidney health, 25-hydroxyvitamin D (25OHD) and parathyroid hormone (PTH) have been extensively investigated in patients with AN, however none of the previous studies accounted for age-specific reference ranges for PTH. The aim of this study was to investigate central measures of calcium and vitamin D metabolism in adolescents with newly diagnosed AN using age-specific reference ranges and to determine whether any significant abnormalities required further study.
Methods: This was a cross-sectional study of 61 adolescents (mean age = aged 15.2 ± 1.56 years) with newly diagnosed AN, referred to a tertiary center over a period of 2 years. Demographic, auxiological, and nutrient (vitamin D and calcium) intake data was obtained. Central measures of calcium and vitamin D metabolism in blood and urine were investigated. PTH results were compared with age-specific reference ranges from the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER). Descriptive statistics and correlation analysis were performed.
Results: Low PTH levels were observed in 35% of the cohort. Overall, serum calcium, phosphate and 25OHD were within the reference range. Using loess curves, PTH had a significant negative and non-linear correlation with 25OHD with an inflection point at a 25OHD level of 100 nmol/l, above which the association was no longer present. Correlation analysis did not show a significant association between PTH and total or corrected serum calcium, urine calcium/creatinine (Ca/Cr) ratio, total dietary calcium intake, magnesium or Tanner staging.
Conclusion: PTH levels were reduced in approximately a third of adolescents with AN. This observation has not been reported given the universal usage of reference ranges that covers all ages. This finding may unmask a potential role for reduced PTH levels in the pathogenesis of kidney stones and bone phenotype in patients with AN
Rifampin monotherapy for children with idiopathic infantile hypercalcemia
Idiopathic Infantile Hypercalcemia (IIH) is characterized by hypercalcemia and hypercalciuria owing to PTH-independent increases in circulating concentrations of 1,25(OH)2D. At least 3 forms of IHH can be distinguished genetically and mechanistically: infantile hypercalcemia-1 (Hypercalcemia, Infantile, 1; HCINF1) due to CYP24A1 mutations results in decreased inactivation of 1,25(OH)2D; HCINF2 due to SLC34A1 mutations results in excessive 1,25(OH)2D production; and HCINF3 in which a variety of gene variants of uncertain significance (VUS) have been identified and where the mechanism for increased 1,25 (OH)2D is unclear. Conventional management with dietary calcium and vitamin D restriction has only limited success. Induction of the P450 enzyme CYP3A4 by rifampin can provide an alternate pathway for inactivation of 1,25(OH)2D that is useful in HCINF1 and may be effective in other forms of IIH. We sought to assess the efficacy of rifampin to decrease levels of serum 1,25(OH)2D and calcium, and urinary calcium concentrations in subjects with HCINF3, and to compare the response to a control subject with HCINF1. Four subjects with HCINF3 and the control subject with HCINF1 completed the study using rifampin 5 mg/kg/day and 10 mg/kg/day each for 2 months separated by a 2-month washout period. Patients had age-appropriate intake of dietary calcium plus 200 IU vitamin D/day. Primary outcome was efficacy of rifampin to lower serum concentrations of 1,25(OH)2D. The secondary outcomes included the reduction of serum calcium, urinary calcium excretion (as random urine calcium: creatinine (ca:cr) ratio) and serum 1,25(OH)2D/PTH ratio. Rifampin was well tolerated and induced CYP3A4 at both doses in all subjects. The control subject with HCINF1 showed significant response to both rifampin doses with decreases in the serum concentration of 1,25(OH)2D and the 1,25(OH)2D/PTH ratio while the serum and urine ca:cr levels were unchanged. The four patients with HCINF3 showed reductions in 1,25(OH)2D and urinary ca:cr after 10 mg/kg/d, but hypercalcemia did not improve and there were variable responses in 1,25(OH)2D/PTH ratios. These results support further longer-term studies to clarify the usefulness of rifampin as a medical therapy for IIH
Mucolipidosis II presenting as severe neonatal hyperparathyroidism
Mucolipidosis II (ML II or I-cell disease ) (OMIM 252500) is an autosomal recessive lysosomal enzyme targeting disorder that usually presents between 6 and 12 months of age with a clinical phenotype resembling Hurler syndrome and a radiological picture of dysostosis multiplex. When ML II is severe enough to be detected in the newborn period, the radiological changes have been described as similar to hyperparathyroidism or rickets. The biological basis of these findings has not been explored and few biochemical measurements have been recorded. We describe three unrelated infants with ML II who had radiological features of intrauterine hyperparathyroidism and biochemical findings consistent with severe secondary neonatal hyperparathyroidism (marked elevation of serum parathyroid hormone and alkaline phosphatase levels). The vitamin D metabolites were not substantially different from normal and repeatedly normal calcium concentrations excluded vitamin D deficiency rickets and neonatal severe hyperparathyroidism secondary to calcium-sensing receptor gene mutations (OMIM 239200). The pathogenesis of severe hyperparathyroidism in the fetus and newborn with ML II is unexplained. We hypothesize that the enzyme targeting defect of ML II interferes with transplacental calcium transport leading to a calcium starved fetus and activation of the parathyroid response to maintain extracellular calcium concentrations within the normal range. Conclusion: Newborns with mucolipidosis II can present with radiological and biochemical signs of hyperparathyroidism. Awareness of this phenomenon may help in avoiding diagnostic pitfalls and establishing a proper diagnosis and therap
Relationship between risk factors for impaired bone health and HR-pQCT in young adults with type 1 diabetes
Objective
In type 1 diabetes, risk factors associated with impaired bone health contribute to increased risk of fracture. The aim of this study was to (1): compare the high-resolution peripheral quantitative computed tomography (HR-pQCT) parameters of young adults with type 1 diabetes with those of healthy controls (2), identify sex differences, and (3) evaluate the association between diabetes and bone health risk factors, with HR-pQCT.
Methods
This is a cross-sectional study in young Canadian adults with childhood onset type 1 diabetes. Z-scores were generated for HR-pQCT parameters using a large healthy control database. Diet, physical activity, BMI, hemoglobin A1C (A1C) and bone health measures were evaluated, and associations were analyzed using multivariate regression analysis.
Results
Eighty-eight participants (age 21 ± 2.2 years; 40 males, 48 females, diabetes duration 13.9 ± 3.4 years) with type 1 diabetes were studied. Low trabecular thickness and elevated cortical geometry parameters were found suggesting impaired bone quality. There were no sex differences. Significant associations were found: Vitamin D (25(OH)D) with trabecular parameters with possible synergy with A1C, parathyroid hormone with cortical parameters, BMI with cortical bone and failure load, and diabetes duration with trabecular area.
Conclusions
Our data suggests impairment of bone health as assessed by HR-pQCT in young adults with type 1 diabetes. Modifiable risk factors were associated with trabecular and cortical parameters. These findings imply that correction of vitamin D deficiency, prevention and treatment of secondary hyperparathyroidism, and optimization of metabolic control may reduce incident fractures
Recommended from our members
Social Determinants of Health Are Associated with Markers of Renal Injury in Adolescents with Type 1 Diabetes.
OBJECTIVE: To examine the relationship between the social determinants of health and markers of early renal injury in adolescent patients with type 1 diabetes (T1D). STUDY DESIGN: Renal outcomes included estimated glomerular filtration rate (eGFR) and albumin-creatinine excretion ratio (ACR). Differences in urinary and serum inflammatory markers also were assessed in relation to social determinants of health. Regression analysis was used to evaluate the association between the Ontario Marginalization Index (ON-Marg) as a measure of the social determinants of health, patient characteristics, ACR, eGFR, and renal filtration status (hyperfiltration vs normofiltration). RESULTS: Participants with T1D (n = 199) with a mean age of 14.4 ± 1.7 years and diabetes duration of 7.2 ± 3.1 years were studied. Mean eGFR was 122.0 ± 19.4 mL/min/1.73 m2. Increasing marginalization was positively associated with eGFR (P < .0001) but not with ACR (P = .605). Greater marginalization was associated with greater median levels of urinary interleukin (IL)-2, IL-12 (p40), macrophage-derived chemokine, monocyte chemoattractant protein-3, and tumor necrosis factor-β and serum IL-2. ON-Marg was significantly associated with eGFR after we controlled for age, sex, body mass index z score, ethnicity, serum glucose, and hemoglobin A1c in linear regression. A similar association between hyperfiltration and ON-Marg score was observed in multivariable logistic regression. CONCLUSION: Increasing marginalization is significantly associated with both eGFR and hyperfiltration in adolescents with T1D and is associated with significant changes in urinary inflammatory biomarkers. These findings highlight a potentially important interaction between social and biological determinants of health in adolescents with T1D
Severe Primary Hyperparathyroidism Caused by Parathyroid Carcinoma in a 13‐Year‐Old Child; Novel Findings From HRpQCT
Primary hyperparathyroidism is a condition that occurs infrequently in children. Parathyroid carcinoma, as the underlying cause of hyperparathyroidism in this age group, is extraordinarily rare, with only a few cases reported in the literature. We present a 13-year-old boy with musculoskeletal pain who was found to have brown tumors from primary hyperparathyroidism caused by parafibromin-immunodeficient parathyroid carcinoma. Our patient had no clinical, biochemical, or radiographic evidence of pituitary adenomas, pancreatic tumors, thyroid tumors, pheochromocytoma, jaw tumors, renal abnormalities, or testicular lesions. Germline testing for AP2S1, CASR, CDC73/HRPT2, CDKN1B, GNA11, MEN1, PTH1R, RET, and the GCM2 gene showed no pathological variants, and a microarray of CDC73/HRPT2 did not reveal deletion or duplication. He was managed with i.v. fluids, calcitonin, pamidronate, and denosumab prior to surgery to stabilize hypercalcemia. After removal of a single parathyroid tumor, he developed severe hungry bone syndrome and required 3 weeks of continuous i.v. calcium infusion, in addition to oral calcium and activated vitamin D. Histopathological examination identified an angioinvasive parathyroid carcinoma with global loss of parafibromin (protein encoded by CDC73/HRPT2).HRpQCT and DXA studies were obtained prior to surgery and 18-months postsurgery. HRpQCT showed a resolution of osteolytic lesions combined with structural improvement of cortical porosity and an increase in both cortical thickness and density compared with levels prior to treatment. These findings highlight the added value of HRpQCT in primary hyperparathyroidism. In addition to our case, we have provided a review of the published cases of parathyroid cancer in children
The urinary cytokine/chemokine signature of renal hyperfiltration in adolescents with type 1 diabetes.
OBJECTIVE: Urinary cytokine/chemokine levels are elevated in adults with type 1 diabetes (T1D) exhibiting renal hyperfiltration. Whether this observation extends to adolescents with T1D remains unknown. Our first objective was to determine the relationship between hyperfiltration and urinary cytokines/chemokines in normotensive, normoalbuminuric adolescents with T1D using GFR(cystatin). Our second aim was to determine the relationship between urine and plasma levels of inflammatory biomarkers, to clarify the origin of these factors. METHODS: Urine and serum cytokines/chemokines (Luminex platform) and GFR(cystatin) were measured in normofiltering (n = 111, T1D-N, GFR<135 ml/min/1.73 m(2)) and hyperfiltering (n = 31, T1D-H, GFR ≥ 135 ml/min/1.73 m(2)) adolescents with T1D (ages 10-16), and in age and sex matched healthy control subjects (HC, n = 59). RESULTS: We noted significant step-wise increases in urinary cytokine/chemokine excretion according to filtration status with highest levels in T1D-H, with parallel trends in serum analyte concentrations. After adjusting for serum glucose at the time of sampling, differences in urinary cytokine excretion were not statistically significant. Only serum IL-2 significantly differed between HC and T1D (p = 0.0076). CONCLUSIONS: Hyperfiltration is associated with increased urinary cytokine/chemokine excretion in T1D adolescents, and parallel trends in serum cytokine concentration. The GFR-associated trends in cytokine excretion may be driven by the effects of ambient hyperglycemia. The relationship between hyperfiltration, glycemia, and variations in serum and urine cytokine expression and their impact on future renal and systemic vascular complications requires further study
Early changes in cardiovascular structure and function in adolescents with type 1 diabetes.
BACKGROUND: Children with type 1 diabetes (T1D) are at higher risk of early adult-onset cardiovascular disease. We assessed cardiovascular structure and function in adolescents with T1D compared with healthy controls and the relationships between peripheral vascular function and myocardial parameters. METHODS AND RESULTS: 199 T1D [14.4 ± 1.6 years, diabetes duration 6.2 (2.0-12.8) years] and 178 controls (14.4 ± 2.1 years) completed endothelial function by flow mediated vasodilatation (FMD), arterial stiffness using pulse wave velocity (PWV) along with M-mode, pulse wave and tissue Doppler, and myocardial deformation echocardiographic imaging. Systolic (113 ± 10 vs. 110 ± 9 mmHg; p = 0.0005) and diastolic (62 ± 7 vs. 58 ± 7 mmHg; p < 0.0001) blood pressures, carotid femoral PWV and endothelial dysfunction measurements were increased in T1D compared with controls. Systolic and diastolic left ventricular dimensions and function by M-mode and pulse wave Doppler assessment were not significantly different. Mitral valve lateral e' (17.6 ± 2.6 vs. 18.6 ± 2.6 cm/s; p < 0.001) and a' (5.4 ± 1.1 vs. 5.9 ± 1.1 cm/s; p < 0.001) myocardial velocities were decreased and E/e' (7.3 ± 1.2 vs. 6.7 ± 1.3; p = 0.0003) increased in T1D. Left ventricular mid circumferential strain (-20.4 ± 2.3 vs. -19.5 ± 1.7 %; p < 0.001) was higher, whereas global longitudinal strain was lower (-19.0 ± 1.9 vs. -19.8 ± 1.5 % p < 0.001) in T1D. CONCLUSIONS: Adolescents with T1D exhibit early changes in blood pressure, peripheral vascular function and left ventricular myocardial deformation indices with a shift from longitudinal to circumferential shortening. Longitudinal follow-up of these changes in ongoing prospective trials may allow detection of those most at risk for cardiovascular abnormalities including hypertension that could preferentially benefit from early therapeutic interventions.Funding was provided by the Juvenile Diabetes Research Foundation- Canadian Clinical Trial Network (JDRF-CCTN), the Canadian Diabetes Association, the Heart and Stroke Foundation of Canada and the Sick Kids Labatt Family Heart Center Innovation fund. Funding was also provided by the British Heart Foundation, Diabetes UK and the Juvenile Diabetes Research Foundation
- …