414 research outputs found

    GENETIC AND PHENOTYPIC PARAMETERS ESTIMATED FROM NEBRASKA SPECI FIC-PATHOGEN-FREE SWINE FIELD RECORDS

    Get PDF
    Records collected during 1971 through 1979 from 101,606 hogs raised in 18 Nebraska Specific Pathogen Free herds were analyzed. Traits considered were backfat at 100 kg (BF), weight at 140 d of age (WT) and, in some analyses, number of live pigs/litter at birth (NBA). The phenotypic correlation of BF and WT, averaged across herds, was -.07. The correlations between BF and NBA and between WT and NBA were .04 and -.05, respectively. Average phenotypic standard deviations for BF, WT and NBA were 2.6 mm, 8.8 kg and 2.0 pigs. Estimates of the heritability of BF and WT were lower than most estimates reported from university research herds. Within breed, herd and sex estimates of heritability ranged from -.22.and .51 (unweighted Χ̅ = .16 ± .025) for BF and ranged from -.28 to .49 (Χ̅ = .16 ± .016) for WT. Estimates of the genetic correlation between BF and WT were extremely variable (Χ̅ = -.62 ± 14.3, range = -9.42 to 1.30) among breed-herd-sex subclasses

    A Micromechanical INS/GPS System for Small Satellites

    Get PDF
    The cost and complexity of large satellite space missions continue to escalate. To reduce costs, more attention is being directed toward small lightweight satellites where future demand is expected to grow dramatically. Specifically, micromechanical inertial systems and microstrip global positioning system (GPS) antennas incorporating flip-chip bonding, application specific integrated circuits (ASIC) and MCM technologies will be required. Traditional microsatellite pointing systems do not employ active control. Many systems allow the satellite to point coarsely using gravity gradient, then attempt to maintain the image on the focal plane with fast-steering mirrors. Draper's approach is to actively control the line of sight pointing by utilizing on-board attitude determination with micromechanical inertial sensors and reaction wheel control actuators. Draper has developed commercial and tactical-grade micromechanical inertial sensors, The small size, low weight, and low cost of these gyroscopes and accelerometers enable systems previously impractical because of size and cost. Evolving micromechanical inertial sensors can be applied to closed-loop, active control of small satellites for micro-radian precision-pointing missions. An inertial reference feedback control loop can be used to determine attitude and line of sight jitter to provide error information to the controller for correction. At low frequencies, the error signal is provided by GPS. At higher frequencies, feedback is provided by the micromechanical gyros. This blending of sensors provides wide-band sensing from dc to operational frequencies. First order simulation has shown that the performance of existing micromechanical gyros, with integrated GPS, is feasible for a pointing mission of 10 micro-radians of jitter stability and approximately 1 milli-radian absolute error, for a satellite with 1 meter antenna separation. Improved performance micromechanical sensors currently under development will be suitable for a range of micro-nano-satellite applications

    Orthogonal methods based ant colony search for solving continuous optimization problems

    Get PDF
    Research into ant colony algorithms for solving continuous optimization problems forms one of the most significant and promising areas in swarm computation. Although traditional ant algorithms are designed for combinatorial optimization, they have shown great potential in solving a wide range of optimization problems, including continuous optimization. Aimed at solving continuous problems effectively, this paper develops a novel ant algorithm termed "continuous orthogonal ant colony" (COAC), whose pheromone deposit mechanisms would enable ants to search for solutions collaboratively and effectively. By using the orthogonal design method, ants in the feasible domain can explore their chosen regions rapidly and e±ciently. By implementing an "adaptive regional radius" method, the proposed algorithm can reduce the probability of being trapped in local optima and therefore enhance the global search capability and accuracy. An elitist strategy is also employed to reserve the most valuable points. The performance of the COAC is compared with two other ant algorithms for continuous optimization of API and CACO by testing seventeen functions in the continuous domain. The results demonstrate that the proposed COAC algorithm outperforms the others

    Influence of Sleeve Gastrectomy on NASH and Type 2 Diabetes Mellitus

    Get PDF
    Background. Nonalcoholic fatty liver disease is present in up to 85% of adipose patients and may proceed to nonalcoholic steatohepatitis (NASH). With insulin resistance and obesity being the main risk factors for NASH, the effect of isolated sleeve gastrectomy (ISG) on these parameters was examined. Methods. 236 patients underwent ISG with intraoperative liver biopsy from December 2002 to September 2009. Besides demographic data, pre-operative weight/BMI, HbA1c, AST, ALT, triglycerides, HDL and LDL levels were determined. Results. A significant correlation of NASH with higher HbA1c, AST and ALT and lower levels for HDL was observed (P < .05, <.0001, <.0001, <.01, resp.). Overall BMI decreased from 45.0 ± 6.8 to 29.7 ± 6.5 and 31.6 ± 4.4 kg/m2 at 1 and 3 years. An impaired weight loss was demonstrated for patients with NASH and patients with elevated HbA1c (plateau 28.08 kg/m2 versus 29.79 kg/m2 and 32.30 kg/m2 versus 28.79 kg/m2, resp.). Regarding NASH, a significant improvement of AST, ALT, triglyceride and HDL levels was shown (P < .0001 for all). A resolution of elevated HbA1c was observed in 21 of 23 patients. Summary. NASH patients showed a significant loss of body weight and amelioration of NASH status. ISG can be successfully performed in these patients and should be recommended for this subgroup

    In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor

    Get PDF
    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor
    corecore