2 research outputs found
The late stages of evolution of helium star-neutron star binaries and the formation of double neutron star systems
With a view to understanding the formation of double neutron-stars (DNS), we
investigate the late stages of evolution of helium stars with masses of 2.8 -
6.4 Msun in binary systems with a 1.4 Msun neutron-star companion. We found
that mass transfer from 2.8 - 3.3 Msun helium stars and from 3.3 - 3.8 Msun in
very close orbits (P_orb > 0.25d) will end up in a common-envelope (CE) and
spiral-in phase due to the development of a convective helium envelope. If the
neutron star has sufficient time to complete the spiraling-in process before
the core collapses, the system will produce very tight DNSs (P_orb ~ 0.01d)
with a merger timescale of the order of 1 Myr or less. These systems would have
important consequences for the detection rate of GWR and for the understanding
of GRB progenitors. On the other hand, if the time left until the explosion is
shorter than the orbital-decay timescale, the system will undergo a SN
explosion during the CE phase. Helium stars with masses 3.3 - 3.8 Msun in wider
orbits (P_orb > 0.25d) and those more massive than 3.8 Msun do not go through
CE evolution. The remnants of these massive helium stars are DNSs with periods
in the range of 0.1 - 1 d. This suggests that this range of mass includes the
progenitors of the galactic DNSs with close orbits (B1913+16 and B1534+12). A
minimum kick velocity of 70 km/s and 0 km/s (for B1913+16 and B1534+12,
respectively) must have been imparted at the birth of the pulsar's companion.
The DNSs with wider orbits (J1518+4904 and probably J1811-1736) are produced
from helium star-neutron star binaries which avoid RLOF, with the helium star
more massive than 2.5 Msun. For these systems the minimum kick velocities are
50 km/s and 10 km/s (for J1518+4904 and J1811-1736, respectively).Comment: 16 pages, latex, 12 figures, accepted for publication in MNRA