277 research outputs found
The Use of an Experimental Design Approach to Investigate the Interactions of Additives used in the Making of the Negative Plate in Lead-acid Batteries
When a conventional starting, lighting and ignition (SLI) lead acid battery is exposed to a high rate partial state of charge (HRPSoC) cycling, it would experience a build-up of irreversible PbSO4 on the negative plate, resulting in capacity loss and electrode damage. The addition of certain graphites to the negative paste mix has proven to be successful in reducing this effect. This study looked at using statistical design of experimental (DoE) principles to observe interactions between two graphite types and a nanocarbon together with other additives, such as BaSO4 and Vanisperse, to a negative paste mixture. The response factors considered were in relation to their effect on the battery’s cold cranking ability (CCA) at –18 °C, the HRPSoC and its active material utilization. Typical flooded nominal 8 Ah test cells were assembled in a reverse ratio build,with three positive and two negative plates, with three types of added carbons (flake graphite, natural graphite and nanocarbon) added to the negative paste mixture at a two-level design. The study showed the usefulness of a statistical DoE approach in the effective use of additives that are included to the negative plate paste mixture, where there are interactions between the amounts of added carbon, BaSO4 and Vanisperse, with respect to the responses of CCA and HRPSoC, that do not necessarily act independently – based on their amounts – on the performance of the active material. The study also showed that there are correlations between certain response factors, such as the number of achievable cycles within a HRPSoC test sequence, and the type of added carbon.Keywords: Pb-acid battery, Pb-plate, graphite, expanders, design of experimen
The application of activated carbon for the adsorption and elution of platinum group metals from dilute cyanide leach solutions
The research presented in this paper investigated the practical aspects of the recovery of platinum group metals (PGMs) from a dilute cyanide leach solution containing base metals, in a manner similar to that used for gold extraction in a typical CIP process, and focuses on both the adsorption and elution stages. The carrier phase extraction of precious metals using activated carbon offers significant advantages over other processes in terms of simplicity, the high pre-concentration factor, rapid phase separation, and relatively low capital and operating costs. As a sorbent, activated carbon is still by far the most important material because of its large surface area, high adsorption capacity, porous structure, negligible environmental toxicity, low cost, and high purity standards. Adsorption tests were conducted on a pregnant alkaline leach solution (0.15 ppm Pt, 0.38 ppm Pd, 0.1 ppm Au) resulting from cyanide extraction performed in column leach tests. The initial adsorption rates of Pt, Pd, and Au were very fast and recoveries of these three metals were approximately 90 per cent after 2 hours, and 100 per cent for Pt, 97.4 per cent for Pd, and 99.9 per cent for Au after 72 hours. The parameters that influence the extraction of PGMs and Au were examined to assess their relative importance during the adsorption process in order to provide the basis for process optimization. The concentration of thiocyanate was not identified as significant factor for PGMs adsorption, while Ni concentration was the most significant extraction process parameter. Base metal cyanide complexes adsorb and compete with the PGM complexes for sites on activated carbon, and while copper adsorption can be minimized by adjusting the residence time, Ni adsorbs at approximately the same rate as the PGMs, influencing the loading capacity and adsorption kinetics of the PGMs.The feasibility of eluting platinum and palladium cyanide complexes from activated carbon using an analogue of the AARL process was investigated. Platinum and palladium elute from activated carbon almost to completion in 4 to 5 bed volumes at 80°C, while the elution of gold at this temperature is slow, with a significant amount of gold still to be eluted after 16 bed volumes. The equilibrium loading of gold is exothermic in nature (Fleming and Nicol, 1984) which will result in an increase in gold elution kinetics with an increase in temperature at similar pre-treatment conditions. A similar result was found for the elution of Pt and Pd. Cyanide pre-treatment was found to have a significant influence on PGM elution. Higher cyanide concentration in the pre-treatment step results in more efficient elution up to a point, and results suggest the possibility of an optimum cyanide concentration, beyond which elution efficiency starts decreasing due to increased ionic strength
The Adsorption and Elution of Platinum Group Metals (Pt, Pd, and Au) from Cyanide Leach Solutions using Activated Carbon
This paper investigates the recovery of platinum group metals (PGMs) from a dilute cyanide leach solution containing base metals, in a manner similar to that used for gold extraction in a typical CIP process, and focuses on both the adsorption and elution stages. The carrier-phase extraction of precious metals using activated carbon offers significant advantages over other processes in terms of simplicity, the high pre-concentration factor, rapid phase separation, and relatively low capital and operating costs. As a sorbent, activated carbon is still by far the most important material because of its large surface area, high adsorption capacity, porous structure, negligible environmental toxicity, low cost, and high purity standards. Adsorption tests were performed on a pregnant alkaline leach solution (0.15 ppm Pt, 0.38 ppm Pd, 0.1 ppm Au) resulting from cyanide extraction performed in column leach tests. The initial adsorption rates of platinum, palladium, and gold were very fast and recoveries of these three metals were approximately 90 per cent after 2 hours and 100 per cent, 97.4 per cent, and 99.9 per cent respectively after 72 hours. The parameters that influence the extraction of PGMs and Au were examined to assess their relative importance during the adsorption process in order to provide the basis for process optimization. The concentration of thiocyanate was not identified as significant factor for PGMs adsorption, while nickel concentration was the most significant extraction process parameter. Base metal cyanide complexes adsorb and compete with the PGM complexes for sites on activated carbon, and while copper adsorption can be minimized by adjusting the residence time, nickel adsorbs at approximately the same rate as that of the PGMs, influencing the loading capacity and adsorption kinetics of the PGMs.The feasibility of eluting platinum and palladium cyanide complexes from activated carbon using an analogue of the AARL process was investigated. Platinum and palladium elute from activated carbon almost to completion in 4 to 5 bed volumes at 80°C, while the elution of gold at this temperature is slow, with a significant amount of gold still to be eluted after 16 bed volumes. Cyanide pre-treatment was found to have a significant influence on PGM elution. Higher cyanide concentration in the pre-treatment step results in more efficient elution up to a point, and experiments suggest the possibility of an optimum cyanide concentration, beyond which elution efficiency starts decreasing
Review of power line communications standards in Africa
The standards in power line communications (PLC) calibrate parameters such as frequencies allocation, signal level, security, topology of the network and many others parameters. The leap forward of power line communications technology is motivated by the willingness of the standardization organizations (SDO)s such as ITU, IEC, ISO, IEEE, CENELEC to define how the technologies are going to be deployed. This paper presents the different SDOs, Alliances and groups regulating the PLC sector. The interoperability and coexistence for some technologies are underlined. The process of developing PLC standards by ITU, IEEE 1901, CENELEC is described. The advantages and disadvantages of using PLC technology in Africa are discussed
Cancellation and error correction for narrowband interference with spectral nulls codes and OFDM modulation
Conference proceeding
Error correction of frequency-selective fading channels with spectral nulls codes
Abstract: In this paper, we investigate a prior error correction technique for frequency selective fading channels. Spectral nulls codes with nulls at submultiple frequencies are used to avoid fades at the corresponding frequencies. Coincide the spectrum null at the corresponding fading frequency and playing with its wideness, will minimize the bit errors caused by the channel
Detecting the zero-crossing message to achieve low bit transmission over H-bridge inverter
Home automation and smart grid development is motivated by many advantageous situations that include the demands on renewable energy and the advantages provided by power line communications technology (PLC). The integration of solar energy into conventional grid implies the control of different modules included in the system. Remote control seems to be the control mode by excellence, in which communication is the main point to focus on. The pulse width modulation (PWM) scheme used to control the inverter is also used to modulate the zero-crossing point of the output sine wave of the inverter, to transfer data. The zero-crossing modulation technique is proposed and basic elements to construct the model are proposed. Simulated constellations of the received signal are presented
Increased levels and pulsatility of Follicle-Stimulating Hormone in mothers of hereditary dizygotic twins
According to the endocrine model of hereditary dizygotic twinning, high FSH is responsible for multiple ovulation and pregnancy. Our study explored the underlying neuroendocrine causes
Atomic oxygen assisted CO2conversion: A theoretical analysis
peer reviewedWith climate change still a pressing issue, there is a great need for carbon capture, utilisation and storage (CCUS) methods. We propose a novel concept where CO2 conversion is accomplished by O2 splitting followed by the addition of O atoms to CO2. The latter is studied here by means of kinetic modelling. In the first instance, we study various CO2/O ratios, and we observe an optimal CO2 conversion of around 30-40% for 50% O addition. Gas temperature also has a large influence, with a minimum temperature of around 1000 K to a maximum of 2000 K for optimal conversion. In the second instance, we study various CO2/O/O2 ratios, due to O2 being a starting gas. Also here we define optimal regions for CO2 conversion, which reach maximum conversion for a CO2 fraction of 50% and an O/O2 ratio bigger than 1. Those can be expanded by heating on one hand, for low atomic oxygen availability, and by quenching after reaction on the other hand, for cases where the temperatures are too high. Our model predictions can serve as a guideline for experimental research in this domain
- …