388 research outputs found

    Reconstructing the Kalman filter for stationary and non stationary time series

    Get PDF
    A Kalman filter, suitable for application to a stationary or a non-stationary time series, is proposed. It works on time series with missing values. It can be used on seasonal time series where the associated state space model may not satisfy the traditional observability condition. A new concept called an `extended normal random vector' is introduced and used throughout the paper to simplify the specification of the Kalman filter. It is an aggregate of means, variances, covariances and other information needed to define the state of a system at a given point in time. By working with this aggregate, the algorithm is specified without direct recourse to those relatively complex formulae for calculating associated means and variances, normally found in traditional expositions of the Kalman filter. A computer implementation of the algorithm is also described where the extended normal random vector is treated as an object; the operations of addition, subtraction and multiplication are overloaded to work on instances of this object; and a form of statistical conditioning is implemented as an operator

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    In Vitro Selection of a DNA-Templated Small-Molecule Library Reveals a Class of Macrocyclic Kinase Inhibitors

    Get PDF
    DNA-templated organic synthesis enables the translation of DNA sequences into synthetic small-molecule libraries suitable for in vitro selection. Previously, we described the DNA-templated multistep synthesis of a 13 824-membered small-molecule macrocycle library. Here, we report the discovery of small molecules that modulate the activity of kinase enzymes through the in vitro selection of this DNA-templated small-molecule macrocycle library against 36 biomedically relevant protein targets. DNA encoding selection survivors was amplified by PCR and identified by ultra-high-throughput DNA sequencing. Macrocycles corresponding to DNA sequences enriched upon selection against several protein kinases were synthesized on a multimilligram scale. In vitro assays revealed that these macrocycles inhibit (or activate) the kinases against which they were selected with IC50 values as low as 680 nM. We characterized in depth a family of macrocycles enriched upon selection against Src kinase, and showed that inhibition was highly dependent on the identity of macrocycle building blocks as well as on backbone conformation. Two macrocycles in this family exhibited unusually strong Src inhibition selectivity even among kinases closely related to Src. One macrocycle was found to activate, rather than inhibit, its target kinase, VEGFR2. Taken together, these results establish the use of DNA-templated synthesis and in vitro selection to discover small molecules that modulate enzyme activities, and also reveal a new scaffold for selective ATP-competitive kinase inhibition.Chemistry and Chemical Biolog

    Experimental ‘Jet Lag’ Inhibits Adult Neurogenesis and Produces Long-Term Cognitive Deficits in Female Hamsters

    Get PDF
    Background: Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined. Methodology/Principal Findings: In the present study, we investigated whether experimental ‘jet lag ’ (i.e., phase advances of the light:dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function. Conclusions/Significance: Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learnin

    Perspectives on ethnic and racial disparities in Alzheimer\u27s disease and related dementias: Update and areas of immediate need

    Get PDF
    Alzheimer\u27s disease and related dementias (ADRDs) are a global crisis facing the aging population and society as a whole. With the numbers of people with ADRDs predicted to rise dramatically across the world, the scientific community can no longer neglect the need for research focusing on ADRDs among underrepresented ethnoracial diverse groups. The Alzheimer\u27s Association International Society to Advance Alzheimer\u27s Research and Treatment (ISTAART; alz.org/ISTAART) comprises a number of professional interest areas (PIAs), each focusing on a major scientific area associated with ADRDs. We leverage the expertise of the existing international cadre of ISTAART scientists and experts to synthesize a cross-PIA white paper that provides both a concise “state-of-the-science” report of ethnoracial factors across PIA foci and updated recommendations to address immediate needs to advance ADRD science across ethnoracial populations. © 2018 The Author
    corecore