652 research outputs found

    The effect of osteopathic manipulative treatment on length of stay in posterolateral postthoracotomy patients: A retrospective case note study

    Get PDF
    Objective This study retrospectively evaluated the effect of OMT on length of stay (LOS) in hospitalized posterolateral postthoracotomy patients. Methods Inpatient medical records of patients who received posterolateral thoracotomies with lung resection between 1998 and 2011 were reviewed for demographic data, LOS, thoracotomy surgery data, consultation data excluding osteopathic manipulative medicine, discharge data, and osteopathic manipulative medicine consultation data. Results Thirty-eight patients received posterolateral thoracotomies with lung resection; 23 patients received OMT and 15 did not. The mean (standard deviation) LOS was 11.0 (6.8) days (range, 5–29 days) for those who received OMT and 10.4 (5.5) days (range, 3–22 days) for those who did not (P = .90). Five patients developed postoperative ileus, and all had received OMT. Patients receiving 2 surgical procedures had a longer LOS than those receiving 1 surgical procedure (P = .002). Having a decortication performed during the thoracotomy increased LOS by a mean of 6.4 days (P = .005). Patients admitted directly to the intensive care unit were more likely to receive OMT than those who were not (P = .03). Conclusion While there was no difference in LOS, severity of illness was different between patients who received OMT and those who did not. Patients who developed postoperative ileus and most of those admitted directly to the intensive care unit received OMT, suggesting that severity of illness was greater for those who received OMT. Future studies should include a higher subject number in order to stratify for illness severity and also assess the effect of OMT on postoperative pain

    Evaluation and verification of the QFix Encompass couch insert for intracranial stereotactic radiosurgery

    Get PDF
    The QFix EncompassTM stereotactic radiosurgery (SRS) immobilization system consists of a thermoplastic mask that attaches to the couch insert to immobilize patients treated with intracranial SRS. This study evaluates the dosimetric impact and verifies a vendor provided treatment planning system (TPS) model in the Eclipse TPS. A thermoplastic mask was constructed for a Lucy 3D phantom, and was scanned with and without the EncompassTM system. Attenuation measurements were performed in the Lucy phantom with and without the insert using a pinpoint ion chamber for energies of 6xFFF, 10xFFF and 6X, with three field sizes (2 × 2, 4 × 4, and 6 × 6 cm2 ). The measurements were compared to two sets of calculations. The first set utilized the vendor provided Encompass TPS model (EncompassTPS ), which consists of two structures: the Encompass and Encompass base structure. Three HU values for the Encompass (200, 300, 400) and Encompass Base (-600, -500, -400) structures were evaluated. The second set of calculations consists of the Encompass insert included in the external body contour (EncompassEXT ) for dose calculation. The average measured percent attenuation in the posterior region of the insert ranged from 3.4%-3.8% for the 6xFFF beam, 2.9%-3.4% for the 10xFFF, and 3.3%-3.6% for the 6X beam. The maximum attenuation occurred at the region where the mask attaches to the insert, where attenuation up to 17% was measured for a 6xFFF beam. The difference between measured and calculated attenuation with either the EncompassEXT or EncompassTPS approach was within 0.5%. HU values in the EncompassTPS model that provided the best agreement with measurement was 400 for the Encompass structure and -400 for the Encompass base structure. Significant attenuation was observed at the area where the mask attaches to the insert. Larger differences can be observed when using few static beams compared to rotational treatment techniques

    Optimization of Treatment Geometry to Reduce Normal Brain Dose in Radiosurgery of Multiple Brain Metastases with Single-Isocenter Volumetric Modulated Arc Therapy

    Get PDF
    Treatment of patients with multiple brain metastases using a single-isocenter volumetric modulated arc therapy (VMAT) has been shown to decrease treatment time with the tradeoff of larger low dose to the normal brain tissue. We have developed an efficient Projection Summing Optimization Algorithm to optimize the treatment geometry in order to reduce dose to normal brain tissue for radiosurgery of multiple metastases with single-isocenter VMAT. The algorithm: (a) measures coordinates of outer boundary points of each lesion to be treated using the Eclipse Scripting Application Programming Interface, (b) determines the rotations of couch, collimator, and gantry using three matrices about the cardinal axes, (c) projects the outer boundary points of the lesion on to Beam Eye View projection plane, (d) optimizes couch and collimator angles by selecting the least total unblocked area for each specific treatment arc, and (e) generates a treatment plan with the optimized angles. The results showed significant reduction in the mean dose and low dose volume to normal brain, while maintaining the similar treatment plan qualities on the thirteen patients treated previously. The algorithm has the flexibility with regard to the beam arrangements and can be integrated in the treatment planning system for clinical application directly

    Technical note: Comparison of the internal target volume (ITV) contours and dose calculations on 4DCT, average CBCT, and 4DCBCT imaging for lung stereotactic body radiation therapy (SBRT)

    Get PDF
    PURPOSE: To investigate the differences between internal target volumes (ITVs) contoured on the simulation 4DCT and daily 4DCBCT images for lung cancer patients treated with stereotactic body radiotherapy (SBRT) and determine the dose delivered on 4D planning technique. METHODS: For nine patients, 4DCBCTs were acquired before each fraction to assess tumor motion. An ITV was contoured on each phase of the 4DCBCT and a union of the 10 ITVs was used to create a composite ITV. Another ITV was drawn on the average 3DCBCT (avgCBCT) to compare with current clinical practice. The Dice coefficient, Hausdorff distance, and center of mass (COM) were averaged over four fractions to compare the ITVs contoured on the 4DCT, avgCBCT, and 4DCBCT for each patient. Planning was done on the average CT, and using the online registration, plans were calculated on each phase of the 4DCBCT and on the avgCBCT. Plan dose calculations were tested by measuring ion chamber dose in the CIRS lung phantom. RESULTS: The Dice coefficients were similar for all three comparisons: avgCBCT-to-4DCBCT (0.7 ± 0.1), 4DCT-to-avgCBCT (0.7 ± 0.1), and 4DCT-to-4DCBCT (0.7 ± 0.1); while the mean COM differences were also comparable (2.6 ± 2.2mm, 2.3 ± 1.4mm, and 3.1 ± 1.1mm, respectively). The Hausdorff distances for the comparisons with 4DCBCT (8.2 ± 2.9mm and 8.1 ± 3.2mm) were larger than the comparison without (6.5 ± 2.5mm). The differences in ITV D95% between the treatment plan and avgCBCT calculations were 4.3 ± 3.0% and -0.5 ± 4.6%, between treatment plan and 4DCBCT plans, respectively, while the ITV V100% coverages were 99.0 ± 1.9% and 93.1 ± 8.0% for avgCBCT and 4DCBCT, respectively. CONCLUSION: There is great potential for 4DCBCT to evaluate the extent of tumor motion before treatment, but image quality challenges the clinician to consistently delineate lung target volumes

    Development and evaluation of a clinical model for lung cancer patients using stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning

    Get PDF
    The purpose of this study was to describe the development of a clinical model for lung cancer patients treated with stereotactic body radiotherapy (SBRT) within a knowledge-based algorithm for treatment planning, and to evaluate the model performance and applicability to different planning techniques, tumor locations, and beam arrangements. 105 SBRT plans for lung cancer patients previously treated at our institution were included in the development of the knowledge-based model (KBM). The KBM was trained with a combination of IMRT, VMAT, and 3D CRT techniques. Model performance was validated with 25 cases, for both IMRT and VMAT. The full KBM encompassed lesions located centrally vs. peripherally (43:62), upper vs. lower (62:43), and anterior vs. posterior (60:45). Four separate sub-KBMs were created based on tumor location. Results were compared with the full KBM to evaluate its robustness. Beam templates were used in conjunction with the optimizer to evaluate the model\u27s ability to handle suboptimal beam placements. Dose differences to organs-at-risk (OAR) were evaluated between the plans gener-ated by each KBM. Knowledge-based plans (KBPs) were comparable to clinical plans with respect to target conformity and OAR doses. The KBPs resulted in a lower maximum spinal cord dose by 1.0 ± 1.6 Gy compared to clinical plans, p = 0.007. Sub-KBMs split according to tumor location did not produce significantly better DVH estimates compared to the full KBM. For central lesions, compared to the full KBM, the peripheral sub-KBM resulted in lower dose to 0.035 cc and 5 cc of the esophagus, both by 0.4Gy ± 0.8Gy, p = 0.025. For all lesions, compared to the full KBM, the posterior sub-KBM resulted in higher dose to 0.035 cc, 0.35 cc, and 1.2 cc of the spinal cord by 0.2 ± 0.4Gy, p = 0.01. Plans using template beam arrangements met target and OAR criteria, with an increase noted in maximum heart dose (1.2 ± 2.2Gy, p = 0.01) and GI (0.2 ± 0.4, p = 0.01) for the nine-field plans relative to KBPs planned with custom beam angles. A knowledge-based model for lung SBRT consisting of multiple treatment modalities and lesion loca-tions produced comparable plan quality to clinical plans. With proper training and validation, a robust KBM can be created that encompasses both IMRT and VMAT techniques, as well as different lesion locations

    Vision Changes after Space Flight Are Related to Alterations in Folate-Dependent One-Carbon Metabolism

    Get PDF
    About 20% of astronauts on International Space Station missions have developed measurable ophthalmic changes after flight. This study was conducted to determine whether the folate-dependent 1-carbon pathway is altered in these individuals. Data were modeled to evaluate differences between individuals with ophthalmic changes (n=5) and those without them (n=15). We also correlated mean preflight serum concentrations of the 1-carbon metabolites with changes in measured refraction after flight. Serum homocysteine (HCy), cystathionine, 2-methylcitric acid, and methylmalonic acid concentrations were 25%-45% higher (P<0.001) in astronauts with ophthalmic changes than in those without them. These differences existed before, during, and after flight. Preflight serum HCy and cystathionine, and in-flight serum folate, were significantly (P<0.05) correlated with postflight change in refraction, and preflight serum concentrations of 2-methylcitric acid tended to be associated (P=0.06) with ophthalmic changes. The biochemical differences observed in those with vision issues strongly suggests impairment of the folate-dependent 1-carbon transfer pathway. Impairment of this pathway, by polymorphisms, diet or other means, may interact with components of the microgravity environment to influence these pathophysiologic changes. This study was funded by the NASA Human Research Program

    Impact of MRI resolution for Linac-based stereotactic radiosurgery.

    Get PDF
    OBJECTIVE: Magnetic resonance imaging (MRI) is a standard imaging modality in intracranial stereotactic radiosurgery (SRS) for defining target volumes. However, wide disparities in MRI resolution exist, which could directly impact accuracy of target delineation. Here, sequences with various MRI resolution were acquired on phantoms to evaluate the effect on volume definition and dosimetric consequence for cranial SRS. MATERIALS/METHODS: Four T1-weighted MR sequences with increasing 3D resolution were compared, including two Spin Echo (SE) 2D acquisitions with 5mm and 3mm slice thickness (SE5mm, SE3mm) and two gradient echo 3D acquisitions (TFE, BRAVO). The voxel sizes were 0.4×0.4×5.0, 0.5×0.5×3.0, 0.9×0.9×1.25, and 0.4×0.4×0.5 mm(3), respectively. Four phantoms with simulated lesions of different shape and volume (range, 0.53-25.0 cm(3)) were imaged, resulting in 16 total sets of MRIs. Four radiation oncologists provided contours on individual MR image set. All observer contours were compared with ground truth, defined on CT image according to the absolute dimensions of the target structure, using Dice similarity coefficient (DSC), Hausdorff distance (HD), mean distance-to-agreement (MDA), and the ratio between reconstructed and true volume (Ratio(vol) ). For dosimetric consequence, SRS plans targeting observer volumes were created. The true Paddick conformity index ( CIpaddicktrue ), calculated with true target volume, was correlated with quality of observer volume. RESULTS: All measures of observer contours improved as increasingly higher MRI resolution was provided from SE5mm to BRAVO. The improvement in DSC, HD and MDA was statistically significant (p\u3c0.01). Dosimetrically, CIpaddicktrue strongly correlated with DSC of the planning observer volume (Pearson\u27s r=0.94, p\u3c0.00001). CONCLUSIONS: Significant improvement in target definition and reduced inter-observer variation was observed as the MRI resolution improved, which also improved the quality of SRS plans. Results imply that high resolution 3D MR sequences should be used to minimize potential errors in target definition, and multi-slice 2D sequences should be avoided

    Characterization and evaluation of 25 MV electronic portal imaging for accurate localization of intra- and extracranial stereotactic radiosurgery

    Get PDF
    2.5 MV electronic portal imaging, available on Varian TrueBeam machines, was characterized using various phantoms in this study. Its low-contrast detectability, spatial resolution, and contrast-to-noise ratio (CNR) were compared with those of conventional 6 MV and kV planar imaging. Scatter effect in large patient body was simulated by adding solid water slabs along the beam path. The 2.5 MV imaging mode was also evaluated using clinically acquired images from 24 patients for the sites of brain, head and neck, lung, and abdomen. With respect to 6 MV, the 2.5 MV achieved higher contrast and preserved sharpness on bony structures with only half of the imaging dose. The quality of 2.5 MV imaging was comparable to that of kV imaging when the lateral separation of patient was greater than 38 cm, while the kV image quality degraded rapidly as patient separation increased. Based on the results of patient images, 2.5 MV imaging was better for cranial and extracranial SRS than the 6 MV imaging

    Commissioning, clinical implementation, and initial experience with a new brain tumor treatment package on a low-field MR-linac

    Get PDF
    To evaluate the image quality, dosimetric properties, setup reproducibility, and planar cine motion detection of a high-resolution brain coil and integrated stereotactic brain immobilization system that constitute a new brain treatment package (BTP) on a low-field magnetic resonance imaging (MRI) linear accelerator (MR-linac). Image quality of the high-resolution brain coil was evaluated with the 17 cm diameter spherical phantom and the American College of Radiology (ACR) Large MRI Phantom. Patient imaging studies approved by the institutional review board (IRB) assisted in selecting image acquisition parameters. Radiographic and dosimetric evaluation of the high-resolution brain coil and the associated immobilization devices was performed using dose calculations and ion chamber measurements. End-to-end testing was performed simulating a cranial lesion in a phantom. Inter-fraction setup variability and motion detection tests were evaluated on four healthy volunteers. Inter-fraction variability was assessed based on three repeat setups for each volunteer. Motion detection was evaluated using three-plane (axial, coronal, and sagittal) MR-cine imaging sessions, where volunteers were asked to perform a set of specific motions. The images were post-processed and evaluated using an in-house program. Contrast resolution of the high-resolution brain coil is superior to the head/neck and torso coils. The BTP receiver coils have an average HU value of 525 HU. The most significant radiation attenuation (3.14%) of the BTP, occurs through the lateral portion of the overlay board where the high-precision lateral-profile mask clips attach to the overlay. The greatest inter-fraction setup variability occurred in the pitch (average 1.08 degree) and translationally in the superior/inferior direction (average 4.88 mm). Three plane cine imaging with the BTP was able to detect large and small motions. Small voluntary motions, sub-millimeter in magnitude (maximum 0.9 mm), from motion of external limbs were detected. Imaging tests, inter-fraction setup variability, attenuation, and end-to-end measurements were quantified and performed for the BTP. Results demonstrate better contrast resolution and low contrast detectability that allows for better visualization of soft tissue anatomical changes relative to head/neck and torso coil systems
    • …
    corecore