64 research outputs found

    Effective modeling for integrated water resource management: a guide to contextual practices by phases and steps and future opportunities

    Get PDF
    The effectiveness of Integrated Water Resource Management (IWRM) modeling hinges on the quality of practices employed through the process, starting from early problem definition all the way through to using the model in a way that serves its intended purpose. The adoption and implementation of effective modeling practices need to be guided by a practical understanding of the variety of decisions that modelers make, and the information considered in making these choices. There is still limited documented knowledge on the modeling workflow, and the role of contextual factors in determining this workflow and which practices to employ. This paper attempts to contribute to this knowledge gap by providing systematic guidance of the modeling practices through the phases (Planning, Development, Application, and Perpetuation) and steps that comprise the modeling process, positing questions that should be addressed. Practice-focused guidance helps explain the detailed process of conducting IWRM modeling, including the role of contextual factors in shaping practices. We draw on findings from literature and the authors’ collective experience to articulate what and how contextual factors play out in employing those practices. In order to accelerate our learning about how to improve IWRM modeling, the paper concludes with five key areas for future practice-related research: knowledge sharing, overcoming data limitations, informed stakeholder involvement, social equity and uncertainty management. © 2019 Elsevier Lt

    Search for pair production of excited top quarks in the lepton+jets final state

    Get PDF

    Modelling the manager: Representing rule-based management in farming systems simulation models

    No full text
    We trace the evolution of the representation of management in cropping and grazing systems models, from fixed annual schedules of identical actions in single paddocks toward flexible scripts of rules. Attempts to define higher-level organizing concepts in management policies, and to analyse them to identify optimal plans, have focussed on questions relating to grazing management owing to its inherent complexity. “Rule templates” assist the re-use of complex management scripts by bundling commonly-used collections of rules with an interface through which key parameters can be input by a simulation builder. Standard issues relating to parameter estimation and uncertainty apply to management sub-models and need to be addressed. Techniques for embodying farmers' expectations and plans for the future within modelling analyses need to be further developed, especially better linking planning- and rule-based approaches to farm management and analysing the ways that managers can learn

    Modelling the manager: Representing rule-based management in farming systems simulation models

    No full text
    We trace the evolution of the representation of management in cropping and grazing systems models, from fixed annual schedules of identical actions in single paddocks toward flexible scripts of rules. Attempts to define higher-level organizing concepts in management policies, and to analyse them to identify optimal plans, have focussed on questions relating to grazing management owing to its inherent complexity. “Rule templates” assist the re-use of complex management scripts by bundling commonly-used collections of rules with an interface through which key parameters can be input by a simulation builder. Standard issues relating to parameter estimation and uncertainty apply to management sub-models and need to be addressed. Techniques for embodying farmers' expectations and plans for the future within modelling analyses need to be further developed, especially better linking planning- and rule-based approaches to farm management and analysing the ways that managers can learn

    Telomerase-Associated Protein TEP1 Is Not Essential for Telomerase Activity or Telomere Length Maintenance In Vivo

    Get PDF
    TEP1 is a mammalian telomerase-associated protein with similarity to the Tetrahymena telomerase protein p80. Like p80, TEP1 is associated with telomerase activity and the telomerase reverse transcriptase, and it specifically interacts with the telomerase RNA. To determine the role of mTep1 in telomerase function in vivo, we generated mouse embryonic stem (ES) cells and mice lacking mTep1. The mTep1-deficient (mTep1(−/−)) mice were viable and were bred for seven successive generations with no obvious phenotypic abnormalities. All murine tissues from mTep1(−/−) mice possessed a level of telomerase activity comparable to that in wild-type mice. In addition, analysis of several tissues that normally lack telomerase activity revealed no reactivation of telomerase activity in mTep1(−/−) mice. Telomere length, even in later generations of mTep1(−/−) mice, was equivalent to that in wild-type animals. ES cells deficient in mTep1 also showed no detectable alteration in telomerase activity or telomere length with increased passage in culture. Thus, mTep1 appears to be completely dispensable for telomerase function in vivo. Recently, TEP1 has been identified within a second ribonucleoprotein (RNP) complex, the vault particle. TEP1 can also specifically bind to a small RNA, vRNA, which is associated with the vault particle and is unrelated in sequence to mammalian telomerase RNA. These results reveal that TEP1 is an RNA binding protein that is not restricted to the telomerase complex and that TEP1 plays a redundant role in the assembly or localization of the telomerase RNP in vivo

    Effective modeling for Integrated Water Resource Management: A guide to contextual practices by phases and steps and future opportunities

    Get PDF
    The effectiveness of Integrated Water Resource Management (IWRM) modeling hinges on the quality of practices employed through the process, starting from early problem definition all the way through to using the model in a way that serves its intended purpose. The adoption and implementation of effective modeling practices need to be guided by a practical understanding of the variety of decisions that modelers make, and the information considered in making these choices. There is still limited documented knowledge on the modeling workflow, and the role of contextual factors in determining this workflow and which practices to employ. This paper attempts to contribute to this knowledge gap by providing systematic guidance of the modeling practices through the phases (Planning, Development, Application, and Perpetuation) and steps that comprise the modeling process, positing questions that should be addressed. Practice-focused guidance helps explain the detailed process of conducting IWRM modeling, including the role of contextual factors in shaping practices. We draw on findings from literature and the authors’ collective experience to articulate what and how contextual factors play out in employing those practices. In order to accelerate our learning about how to improve IWRM modeling, the paper concludes with five key areas for future practice-related research: knowledge sharing, overcoming data limitations, informed stakeholder involvement, social equity and uncertainty management. © 2019 Elsevier Lt

    Effective modeling for Integrated Water Resource Management : A guide to contextual practices by phases and steps and future opportunities

    No full text
    The effectiveness of Integrated Water Resource Management (IWRM) modeling hinges on the quality of practices employed through the process, starting from early problem definition all the way through to using the model in a way that serves its intended purpose. The adoption and implementation of effective modeling practices need to be guided by a practical understanding of the variety of decisions that modelers make, and the information considered in making these choices. There is still limited documented knowledge on the modeling workflow, and the role of contextual factors in determining this workflow and which practices to employ. This paper attempts to contribute to this knowledge gap by providing systematic guidance of the modeling practices through the phases (Planning, Development, Application, and Perpetuation) and steps that comprise the modeling process, positing questions that should be addressed. Practice-focused guidance helps explain the detailed process of conducting IWRM modeling, including the role of contextual factors in shaping practices. We draw on findings from literature and the authors’ collective experience to articulate what and how contextual factors play out in employing those practices. In order to accelerate our learning about how to improve IWRM modeling, the paper concludes with five key areas for future practice-related research: knowledge sharing, overcoming data limitations, informed stakeholder involvement, social equity and uncertainty management.Peer reviewe

    A novel approach for measuring the burden of uncomplicated Plasmodium falciparum malaria : application to data from Zambia

    Get PDF
    Measurement of malaria burden is fraught with complexity, due to the natural history of the disease, delays in seeking treatment or failure of case management. Attempts to establish an appropriate case definition for a malaria episode has often resulted in ambiguities and challenges because of poor information about treatment seeking, patterns of infection, recurrence of fever and asymptomatic infection. While the primary reason for treating malaria is to reduce disease burden, the effects of treatment are generally ignored in estimates of the burden of malaria morbidity, which are usually presented in terms of numbers of clinical cases or episodes, with the main data sources being reports from health facilities and parasite prevalence surveys. The use of burden estimates that do not consider effects of treatment, leads to under-estimation of the impact of improvements in case management. Official estimates of burden very likely massively underestimate the impact of the roll-out of ACT as first-line therapy across Africa. This paper proposes a novel approach for estimating burden of disease based on the point prevalence of malaria attributable disease, or equivalently, the days with malaria fever in unit time. The technique makes use of data available from standard community surveys, analyses of fever patterns in malaria therapy patients, and data on recall bias. Application of this approach to data from Zambia for 2009-2010 gave an estimate of 2.6 (95% credible interval: 1.5-3.7) malaria attributable fever days per child-year. The estimates of recall bias, and of the numbers of days with illness contributing to single illness recalls, could be applied more generally. To obtain valid estimates of the overall malaria burden using these methods, there remains a need for surveys to include the whole range of ages of hosts in the population and for data on seasonality patterns in confirmed case series
    corecore