1,105 research outputs found

    KATANA : a charge-sensitive triggering/veto system for the Sπ\piRIT experiment

    Get PDF
    KATANA — the Kraków Array for Triggering with Amplitude discrimiNAtion, has been built and used as a trigger and Veto detector for the Sπ\piRIT TPC at RIKEN. Its construction allows for operation in magnetic field and provides a fast response for ionizing particles giving the approximate forward multiplicity and charge information. Depending on this information, trigger and veto signals are generated. The Multi-Pixel Photon Counters were used as light sensors for plastic scintillators. Performance of the detector is presented

    KATANA - a charge-sensitive triggering system for the Sπ\piRIT experiment

    Full text link
    KATANA - the Krakow Array for Triggering with Amplitude discrimiNAtion - has been built and used as a trigger and veto detector for the Sπ\piRIT TPC at RIKEN. Its construction allows operating in magnetic field and providing fast response for ionizing particles, giving the approximate forward multiplicity and charge information. Depending on this information, trigger and veto signals are generated. The article presents performance of the detector and details of its construction. A simple phenomenological parametrization of the number of emitted scintillation photons in plastic scintillator is proposed. The effect of the light output deterioration in the plastic scintillator due to the in-beam irradiation is discussed.Comment: 14 pages, 11 figure

    KATANA : a charge-sensitive trigger/veto array for the SπS\pi RIT TPC

    Get PDF
    KATANA — the Krak´ow Array for Triggering with Amplitude discrimiNAtion, has been built and used as a trigger and veto detector for the SπRIT TPC at RIKEN. Its construction allows operating in magnetic field, providing fast response for ionizing particles and giving the approximate multiplicity and charge information on forward emitted reaction products. Depending on this information, trigger and veto signals are generated. Multi-Pixel Photon Counters were used as light sensors for plastic scintillators. Custom designed front-end and peripheral electronics will be presented as well

    Measurements of π±\pi^\pm, K±^\pm, p and pˉ\bar{\textrm{p}} spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of inclusive spectra and mean multiplicities of π±\pi^\pm, K±^\pm, p and pˉ\bar{\textrm{p}} produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c (s=\sqrt{s} = 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter

    MPPC readout of plastic scintillators

    Get PDF

    Hidden strangeness shines in NA61/SHINE

    Get PDF
    Preliminary results on the ϕ (1020) meson production in inelastic proton-proton collisions measured by the NA61/SHINE experiment at the CERN SPS are presented in these proceedings. The results include the first ever differential pT and y measurements at beam momenta of 40 and 80 GeV and the most ever detailed experimental data at 158GeV. The comparison of p + p to Pb + Pb results shows a non-trivial system size dependence of the widths of the rapidity distributions for ϕ mesons, contrasting with that of other hadrons. The results are furthermore compared to the world data on ϕ meson production, demonstrating the better accuracy achieved by the NA61/SHINE experiment, and to several models. None of the models is found to be able to describe simultaneously the shape of transverse momentum spectra, the shape of rapidity distribution and the total yield

    Measurements of ππ±^{±} , KK±^{±}, pp and pˉ\bar{p} spectra in proton-proton interactions at 20, 31, 40, 80 and 158 GeV/cc with the NA61/SHINE spectrometer at the CERN SPS

    Get PDF
    Measurements of inclusive spectra and mean multiplicities of π ± π± , K ± ± , p and p ¯ p¯ produced in inelastic p + p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV /c GeV /c (s √ = s= 6.3, 7.7, 8.8, 12.3 and 17.3 GeV GeV , respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter

    NA61/SHINE measurements of anisotropic flow relative to the spectator plane in Pb+Pb collisions at 30A GeV/c

    Get PDF
    We present an analysis of the anisotropic flow harmonics in Pb+Pb collisions at beam momenta of 30A GeV/c collected by the NA61/SHINE experiment in the year 2016. Directed and elliptic flow coefficients are measured relative to the spectator plane estimated with the Projectile Spectators Detector (PSD). The flow coefficients are reported as a function of transverse momentum in different classes of collision centrality. The results are compared with a new analysis of the NA49 data for Pb+Pb collisions at 40A GeV using forward calorimeters (VCal and RCal) for event plane estimation

    Search for the critical point by the NA61/SHINE experiment

    Get PDF
    NA61/SHINE is a fixed target experiment operating at CERN SPS. Its main goals are to search for the critical point of stronglyinteractingmatterandtostudytheonsetofdeconfinement. Forthesegoalsascanofthetwodimensionalphase diagram (T-μB) is being performed at the SPS by measurements of hadron production in proton-proton, proton-nucleus and nucleus-nucleus interactions as a function of collision energy. In this paper the status of the search for the critical point of strongly interacting matter by the NA61/SHINE Collaboration is presented including recent results on proton intermittency, strongly intensive fluctuation observables of multiplicity and transverse momentum fluctuations. These measurements are expected to be sensitive to the correlation length and, therefore, have the ability to reveal the existence of the critical point via possible non-monotonic behavior. The new NA61/SHINE results are compared to the model predictions
    corecore