126 research outputs found

    Does use of touch screen computer technology improve classroom engagement in children?

    Get PDF
    Many studies have shown that the use of technology in the classroom may influence pupil engagement. Despite the recent widespread use of tablet technology, however, very little research has been carried out into their use in a primary school setting. We investigated the use of tablet computers, specifically Appleā€™s ā€˜iPadā€™, in an upper primary school setting with regard to childrenā€™s engagement. Cognitive, emotional and general engagement was higher in lessons based on iPads than those which were not. There was no difference in behavioral engagement. Of particular significance was the increase in engagement seen in boys, which resulted in their engagement levels increasing to levels comparable to those seen in girls. These findings suggest that tablet technology has potential as a tool in the classroom setting

    College Binge Drinking Associated with Decreased Frontal Activation to Negative Emotional Distractors during Inhibitory Control

    Get PDF
    The transition to college is associated with an increase in heavy episodic alcohol use, or binge drinking, during a time when the prefrontal cortex and prefrontal-limbic circuitry continue to mature. Traits associated with this immaturity, including impulsivity in emotional contexts, may contribute to risky and heavy episodic alcohol consumption. The current study used blood oxygen level dependent (BOLD) multiband functional magnetic resonance imaging (fMRI) to assess brain activation during a task that required participants to ignore background images with positive, negative, or neutral emotional valence while performing an inhibitory control task (Go-NoGo). Subjects were 23 college freshmen (seven male, 18ā€“20 years) who engaged in a range of drinking behavior (past 3 monthsā€™ binge episodes range = 0ā€“19, mean = 4.6, total drinks consumed range = 0ā€“104, mean = 32.0). Brain activation on inhibitory trials (NoGo) was contrasted between negative and neutral conditions and between positive and neutral conditions using non-parametric testing (5000 permutations) and cluster-based thresholding (z = 2.3), p ā‰¤ 0.05 corrected. Results showed that a higher recent incidence of binge drinking was significantly associated with decreased activation of dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), and anterior cingulate cortex (ACC), brain regions strongly implicated in executive functioning, during negative relative to neutral inhibitory trials. No significant associations between binge drinking and brain activation were observed for positive relative to neutral images. While task performance was not significantly associated with binge drinking in this sample, subjects with heavier recent binge drinking showed decreased recruitment of executive control regions under negative versus neutral distractor conditions. These findings suggest that in young adults with heavier recent binge drinking, processing of negative emotional images interferes more with inhibitory control neurocircuitry than in young adults who do not binge drink often. This pattern of altered frontal lobe activation associated with binge drinking may serve as an early marker of risk for future self-regulation deficits that could lead to problematic alcohol use. These findings underscore the importance of understanding the impact of emotion on cognitive control and associated brain functioning in binge drinking behaviors among young adults

    Repair methylation of parental DNA in synchronized cultures of Novikoff hepatoma cells.

    No full text
    Parental and filial DNA strands were isolated from a Novikoff rat hepatoma cell line, synchronized by S-phase arrest with excess thymidine, that had completed up to one round of DNA replication in the presence of (14-C-methyl)methionine and (6-3-H) bromodeoxyuridine. Both strands were methylated, the proportion of total methyl label in parental DNA increasing slightly with time in S-phase. The studies were repeated with (14-C-methyl)methionine and (3-H)deoxycytidine to determine if parental methylation occurred on extant or repair-inserted cytosine residues. Both (14-C) and (3-H) were found in parental DNA. The (14-C)/(3-H) ration of parental DNA-5-methylcytosine was about twice that in filial DNA while the (3-H) data showed twice the concentration of 5-methylcytosine in parental compared to filial DNA. Thus parental methylation occurred on repair-inserted cytosine residues and resulted in overmethylation. That the DNA damage and repair was due to 5-phase arrest was shown by repeating the studies using a sequential mitotic-G1 arrest method. With this method little (14-C) or (3-H) was found in parental DNA. We conclude that S-phase arrest leads to DNA damage and repair with subsequent overmethylation of repair-inserted cytosines; that sequential mitotic-G1 arrest minimizes DNA damage; and, that the latter technique, suitable for synchronization of large quantities of cells, may prove useful in relatively artifact-free studies of eukaryotic DNA replication
    • ā€¦
    corecore