12 research outputs found

    College Binge Drinking Associated with Decreased Frontal Activation to Negative Emotional Distractors during Inhibitory Control

    Get PDF
    The transition to college is associated with an increase in heavy episodic alcohol use, or binge drinking, during a time when the prefrontal cortex and prefrontal-limbic circuitry continue to mature. Traits associated with this immaturity, including impulsivity in emotional contexts, may contribute to risky and heavy episodic alcohol consumption. The current study used blood oxygen level dependent (BOLD) multiband functional magnetic resonance imaging (fMRI) to assess brain activation during a task that required participants to ignore background images with positive, negative, or neutral emotional valence while performing an inhibitory control task (Go-NoGo). Subjects were 23 college freshmen (seven male, 18–20 years) who engaged in a range of drinking behavior (past 3 months’ binge episodes range = 0–19, mean = 4.6, total drinks consumed range = 0–104, mean = 32.0). Brain activation on inhibitory trials (NoGo) was contrasted between negative and neutral conditions and between positive and neutral conditions using non-parametric testing (5000 permutations) and cluster-based thresholding (z = 2.3), p ≤ 0.05 corrected. Results showed that a higher recent incidence of binge drinking was significantly associated with decreased activation of dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), and anterior cingulate cortex (ACC), brain regions strongly implicated in executive functioning, during negative relative to neutral inhibitory trials. No significant associations between binge drinking and brain activation were observed for positive relative to neutral images. While task performance was not significantly associated with binge drinking in this sample, subjects with heavier recent binge drinking showed decreased recruitment of executive control regions under negative versus neutral distractor conditions. These findings suggest that in young adults with heavier recent binge drinking, processing of negative emotional images interferes more with inhibitory control neurocircuitry than in young adults who do not binge drink often. This pattern of altered frontal lobe activation associated with binge drinking may serve as an early marker of risk for future self-regulation deficits that could lead to problematic alcohol use. These findings underscore the importance of understanding the impact of emotion on cognitive control and associated brain functioning in binge drinking behaviors among young adults

    Impact of family history of alcoholism on glutamine/glutamate ratio in anterior cingulate cortex in substance-naïve adolescents

    Get PDF
    Neuroimaging studies of individuals with family histories of alcoholism provide evidence suggesting neurobiological risk factors for alcoholism. Youth family history positive (FH+) for alcoholism exhibit increased impulsivity compared to family history negative (FH−) peers in conjunction with altered functional activation in prefrontal cortex, including anterior cingulate cortex (ACC). This study examined glutamate (Glu) and glutamine (Gln), amino acids vital to protein synthesis, cellular metabolism and neurotransmission, acquired from ACC and parieto-occipital cortex (POC) using magnetic resonance spectroscopy (MRS) at 4T. Participants were 28 adolescents (13 male, 12–14 yrs) and 31 emerging adults (16 male, 18–25 yrs), stratified into FH− and FH+ groups. Significantly higher ACC Gln/Glu was observed in emerging adults versus adolescents in FH− but not FH+ groups. In FH− adolescents, higher impulsivity was significantly associated with higher ACC Gln/Glu. In FH+ emerging adults, higher impulsivity was negatively associated with ACC Gln/Glu. No differences or associations were observed for POC. These findings provide preliminary evidence that family history of alcoholism is associated with a neurochemical profile that may influence normative age differences in glutamatergic metabolites and their association with impulse control, which together could confer greater genetic risk of addiction later in life

    Thalamic Gamma Aminobutyric Acid Level Changes in Major Depressive Disorder After a 12-Week Iyengar Yoga and Coherent Breathing Intervention

    No full text
    Objective: To determine if a 12-week yoga intervention (YI) was associated with increased gamma aminobutyric acid (GABA) levels and decreased depressive symptoms in participants with major depressive disorder (MDD). Methods: Subjects were randomized to a high-dose group (HDG) of three YIs a week and a low-dose group (LDG) of two YIs a week. Thalamic GABA levels were obtained using magnetic resonance spectroscopy at Scan-1 before randomization. After the assigned 12-week intervention, Scan-2 was obtained, immediately followed by a YI and Scan-3. Beck Depression Inventory II (BDI-II) scores were obtained before Scan-1 and Scan-3. Settings/Location: Screenings and interventions occurred at the Boston University Medical Center. Imaging occurred at McLean Hospital. Subjects: Subjects met criteria for MDD. Intervention: Ninety minutes of Iyengar yoga and coherent breathing at five breaths per minute plus homework. Outcome measures: GABA levels and the BDI-II. Results: BDI-II scores improved significantly in both groups. GABA levels from Scan-1 to Scan-3 and from Scan-2 to Scan-3 were significantly increased in the LDG (n = 15) and showed a trend in the total cohort. Post hoc, participants were divided into two groups based on having an increase in GABA levels at Scan-2. Increases in Scan-2 GABA levels were observed in participants whose mean time between their last YI and Scan-2 was 3.93 ± 2.92 standard deviation (SD) days, but not in those whose mean time between their last YI and Scan-2 was 7.83 ± 6.88 SD. Conclusions: This study tentatively supports the hypothesis that one of the mechanisms through which yoga improves mood is by increasing the activity of the GABA system. The observed increase in GABA levels following a YI that was no longer observed 8 days after a YI suggests that the associated increase in GABA after a YI is time limited such that at least one YI a week may be necessary to maintain the elevated GABA levels
    corecore