7 research outputs found

    A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis

    Get PDF
    Bell et al. report 46 new loci associated with biomarkers of iron homeostasis, including ferritin levels, iron binding capacity, and iron saturation, in the Icelandic, Danish and UK populations. The associated loci point to new iron-regulating proteins and important genetic differences between men and women

    A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis

    Get PDF
    Abstract: Iron is essential for many biological functions and iron deficiency and overload have major health implications. We performed a meta-analysis of three genome-wide association studies from Iceland, the UK and Denmark of blood levels of ferritin (N = 246,139), total iron binding capacity (N = 135,430), iron (N = 163,511) and transferrin saturation (N = 131,471). We found 62 independent sequence variants associating with iron homeostasis parameters at 56 loci, including 46 novel loci. Variants at DUOX2, F5, SLC11A2 and TMPRSS6 associate with iron deficiency anemia, while variants at TF, HFE, TFR2 and TMPRSS6 associate with iron overload. A HBS1L-MYB intergenic region variant associates both with increased risk of iron overload and reduced risk of iron deficiency anemia. The DUOX2 missense variant is present in 14% of the population, associates with all iron homeostasis biomarkers, and increases the risk of iron deficiency anemia by 29%. The associations implicate proteins contributing to the main physiological processes involved in iron homeostasis: iron sensing and storage, inflammation, absorption of iron from the gut, iron recycling, erythropoiesis and bleeding/menstruation

    Metabolic engineering of thermophilic bacteria for production of biotechnologically interesting compounds

    No full text
    Many thermophilic bacteria are efficient biomass degraders (producing polysaccharide degrading enzymes and utilizing a great variety of substrates, e.g. lignocellulosic polymers, pentoses, hexoses, as well sugar acids, and sugar alcohols). This makes them interesting organisms as potential cell factories in a circular bioeconomy. Lignocellulosic and marine macroalgal biomasses are regarded as sustainable biorefinery feedstocks for the production of energy carriers and platform and specialty chemicals, thereby meeting impending fossil fuel shortage and counteracting accumulation of greenhouse gasses. However, progress in using thermophilic bacteria that utilize these feedstocks as carbon sources has been hampered by the lack of suitable engineering tools to improve the production profiles of interesting target metabolites as specific synthetic production pathways need to be inserted/modified or existing pathways optimized by metabolic engineering. In this chapter, we review the progress on the use of thermophilic bacteria in metabolic engineering and the available engineering tools and give examples of species for which successful engineering has been accomplished. Today, the majority of thermophilic bacteria targeted for production of compounds of industrial interest by metabolic engineering belong to the phylum Firmicutes (e.g. Thermoanaerobacterium, Caldocellulosiruptor, Geobacillus, and Bacillus), taking advantage of anaerobic catabolic pathways producing organic acids and alcohols. However, there are additional and aerobic species gaining interest concerning biomass degradation and the ability of carbon dioxide fixation as well as production of molecules of interest, and some examples of this are also given

    Generation of Targeted Deletions in the Genome of Rhodothermus marinus▿

    No full text
    The aim of this work was to develop an approach for chromosomal engineering of the thermophile Rhodothermus marinus. A selection strategy for R. marinus had previously been developed; this strategy was based on complementing a restriction-negative trpB strain with the R. marinus trpB gene. The current work identified an additional selective marker, purA, which encodes adenylosuccinate synthase and confers adenine prototrophy. In a two-step procedure, the available Trp+ selection was used during the deletion of purA from the R. marinus chromosome. The alternative Ade+ selection was in turn used while deleting the endogenous trpB gene. Since both deletions are unmarked, the purA and trpB markers may be reused. Through the double deletant SB-62 (ΔtrpB ΔpurA), the difficulties that are associated with spontaneous revertants and unintended chromosomal integration of marker-containing molecules are circumvented. The selection efficiency in R. marinus strain SB-62 (ΔtrpB ΔpurA) was demonstrated by targeting putative carotenoid biosynthesis genes, crtBI, using a linear molecule containing a marked deletion with 717 and 810 bp of 5′ and 3′ homologous sequences, respectively. The resulting Trp+ transformants were colorless rather than orange-red. The correct replacement of an internal crtBI fragment with the trpB marker was confirmed by Southern hybridization analysis of the transformants. Thus, it appears that target genes in the R. marinus chromosome can be readily replaced with linear molecules in a single step by double-crossover recombination

    Engineering the carotenoid biosynthetic pathway in Rhodothermus marinus for lycopene production

    Get PDF
    Rhodothermus marinus has the potential to be well suited for biorefineries, as an aerobic thermophile that produces thermostable enzymes and is able to utilize polysaccharides from different 2nd and 3rd generation biomass. The bacterium produces valuable chemicals such as carotenoids. However, the native carotenoids are not established for industrial production and R. marinus needs to be genetically modified to produce higher value carotenoids. Here we genetically modified the carotenoid biosynthetic gene cluster resulting in three different mutants, most importantly the lycopene producing mutant TK-3 (ΔtrpBΔpurAΔcruFcrtB::trpBcrtBT.thermophilus). The genetic modifications and subsequent structural analysis of carotenoids helped clarify the carotenoid biosynthetic pathway in R. marinus. The nucleotide sequences encoding the enzymes phytoene synthase (CrtB) and the previously unidentified 1′,2′-hydratase (CruF) were found fused together and encoded by a single gene in R. marinus. Deleting only the cruF part of the gene did not result in an active CrtB enzyme. However, by deleting the entire gene and inserting the crtB gene from Thermus thermophilus, a mutant strain was obtained, producing lycopene as the sole carotenoid. The lycopene produced by TK-3 was quantified as 0.49 ​g/kg CDW (cell dry weight)

    SeaBioTech: From Seabed to Test-Bed: Harvesting the Potential of Marine Biodiversity for Industrial Biotechnology

    Get PDF
    SeaBioTech is an EU-FP7 project designed and driven by SMEs to create innovative marine biodiscovery pipelines as a means to convert the potential of marine biotechnology into novel industrial products for the pharmaceutical, cosmetic, aquaculture, functional food and industrial chemistry sectors. To achieve its goals, SeaBioTech brings together leading experts in biology, genomics, natural product chemistry, bioactivity testing, industrial bioprocessing, legal aspects, market analysis and knowledge exchange. SeaBioTech targets novel marine endosymbiotic bacteria from unique and previously untapped habitats, including geothermal intertidal biotopes in Iceland, hydrothermal vent fields and deep-sea oligotrophic basins of the Eastern Mediterranean Sea and underexplored areas of Scottish coasts that are likely to be highly productive sources of new bioactive compounds. This chapter describes the 4 years of activity in the SeaBioTech project, which resulted in a robust, validated workflow suitable for evaluating unexplored activities in marine samples to prioritize potential products for a biotechnological pipeline. An improved integrated methodology involving metagenomics and metabolomics was extensively utilized to prioritize five extremophiles as potential antibiotics, anticancer drugs and novel drugs against metabolic diseases as well as new pharmaceutical excipients to the pipeline. A centralized biobank repository, which included a database of information, was established for future bioprospecting activities. For future marine bioprospecting activities, a harmonized legal position was put together in collaboration with other EU-FP7 blue biotechnology projects
    corecore