17 research outputs found
Improving SERS-based readout strategy for biomarker detecting immunoassays
Detection and monitoring of disease biomarkers increases probability of successful disease treatment. Surface enhanced Raman scattering (SERS) has several advantages over conventional readout strategies utilized in detecting immunoassays. SERS provides a method for chemical characterization based on molecular vibrational spectra. Raman signals are typically weak and need to be enhanced. This can be done using plasmons in nanoparticles of noble metals, we use gold (Au). Molecules with known spectra, Raman reporter molecules (RRM), can be adsorbed to Au nanoparticles. This enhances the Raman signal of the RRM when illuminated by a laser of optimal wavelength. Adding antibodies to nanoparticles modified with this method can then provide a means for finding hard to detect disease biomarkers. The focus of this research is the effects to the Raman signal by varying the nanoparticle modification process. We look at the effects of adding PEG molecules to Au nanoparticles and how Raman signals are affected by the laser used to take measurements. RRM type, nanoparticle size, and PEG amounts were varied. Consecutive measurements show how Raman signals change over time. We have interpreted Raman signal changes as plasmon-driven conversion of RRMs as well as desorption of RRMs from the surface of AuNP and photodamage. We also observed catalytic photoconversion of both NBT and ABT to diazobenzene suggesting that AuNP can act as catalysts in complex reactions. Additionally, we discovered a novel pathway of converting amine substituted benzene to carbon wires as indicated by appearance of the Raman peak at 2130 cm-1
Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers
Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS) and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS
First commissioning results of the multicusp ion source at MIT (MIST-1) for H2+
IsoDAR is an experiment under development to search for sterile neutrinos using the isotope Decay-At-Rest (DAR) production mechanism, where protons impinging on 9Be create neutrons which capture on 7Li which then beta-decays producing ve. As this will be an isotropic source of ve, the primary driver current must be large (10 mA cw) for IsoDAR to have sufficient statistics to be conclusive within 5 years of running. H2+ was chosen as primary ion to overcome some of the space-charge limitations during low energy beam transport and injection into a compact cyclotron. The H2+ will be stripped into protons before the target. At MIT, a multicusp ion source (MIST-1) was designed and built to produce a high intensity beam with a high H2+ fraction. MIST-1 is now operational at the Plasma Science and Fusion Center (PSFC) at MIT and under commissioning.National Science Foundation (U.S.). (Grant PHY-1505858)Bose Foundatio
Ultra-Stable Environment Control for the NEID Spectrometer: Design and Performance Demonstration
Two key areas of emphasis in contemporary experimental exoplanet science are
the detailed characterization of transiting terrestrial planets, and the search
for Earth analog planets to be targeted by future imaging missions. Both of
these pursuits are dependent on an order-of-magnitude improvement in the
measurement of stellar radial velocities (RV), setting a requirement on
single-measurement instrumental uncertainty of order 10 cm/s. Achieving such
extraordinary precision on a high-resolution spectrometer requires
thermo-mechanically stabilizing the instrument to unprecedented levels. Here,
we describe the Environment Control System (ECS) of the NEID Spectrometer,
which will be commissioned on the 3.5 m WIYN Telescope at Kitt Peak National
Observatory in 2019, and has a performance specification of on-sky RV precision
< 50 cm/s. Because NEID's optical table and mounts are made from aluminum,
which has a high coefficient of thermal expansion, sub-milliKelvin temperature
control is especially critical. NEID inherits its ECS from that of the
Habitable-zone Planet Finder (HPF), but with modifications for improved
performance and operation near room temperature. Our full-system stability test
shows the NEID system exceeds the already impressive performance of HPF,
maintaining vacuum pressures below Torr and an RMS temperature
stability better than 0.4 mK over 30 days. Our ECS design is fully open-source;
the design of our temperature-controlled vacuum chamber has already been made
public, and here we release the electrical schematics for our custom
Temperature Monitoring and Control (TMC) system.Comment: Accepted for publication in JATI
Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers
Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS) and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS
Ion Source Development for IsoDAR and Multi-Messenger Astrophysics with KamLAND
Neutrinos can answer many open questions in physics. Doing so will require developing new technology, effective collaboration between experiments, and using existing data in new ways. This work presents contributions to these efforts with the IsoDAR, SNEWS, and KamLAND collaborations. The results are a new ion source for a sterile neutrino search, an upgraded alert system for supernova neutrino detection, and the first flux limits on MeV anti-electron neutrinos from galactic X-ray binaries.Ph.D
Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers
Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS) and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS