11 research outputs found

    Influence of preparation method on the performance of vanadia-niobia catalysts for the oxidative dehydrogenation of propane

    Get PDF
    The influence of various preparation methods on the performance of V-Nb-0 catalysts has been investigated. It was found that the activity and selectivity of a vanadium site depend on the nature of the neighbouring atoms. Vanadium neighbours provide activity, while niobium neighbours provide selectivity. Careful preparation of these catalysts ensures a homogeneous distribution and good mixing of the vanadium and niobium. It was also found that the vanadium becomes mobile upon reduction and this results in better distribution of vanadium in used catalysts

    Investigation of V2o5/Nb2o5 Catalysts by V-51 Solid-State Nmr

    Get PDF
    Contains fulltext : 28209___.PDF (publisher's version ) (Open Access

    A low-energy ion scattering (LEIS) study of the influence of the vanadium concentration on the activity of vanadium-niobium oxide catalysts for the oxidative dehydrogenation of propane

    Get PDF
    A series of vanadium-niobium oxide catalysts in which the vanadia content varies between 0.3 and 18 mol% was prepared by coprecipitation. These catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), low-energy ion scattering (LEIS), and by catalytic testing in the oxidative dehydrogenation reaction of propane. The results of the surface analysis by XPS and LEIS are compared, It is concluded that the active site on the catalyst surface contains 2.0 ± 0.3 vanadium atoms on average. This can be understood by assuming the existence of two or three different sites: isolated vanadium atoms, pairs of vanadium atoms, or ensembles of three vanadium atoms. At higher vanadium concentration more vanadium clusters with a higher activity are at the surface. LEIS revealed that as the vanadium concentration in the catalyst increases, vanadium replaces niobium at the surface. At vanadium concentrations above 8 mol%, new phases such as ß-(Nb, V)2O5 which are less active because vanadium is present in isolated sites are formed, while the vanadium surface concentration shows a slight decrease

    Preferential exposure of certain crystallographic planes on the surface of spinel ferrites: a study by LEIS on polycrystalline spinel ferrite surfaces

    No full text
    Spinel ferrites are commercially important because of their excellent magnetic and catalytic properties. The study by Low Energy Ion Scattering (LEIS) can reveal atomic scale information on the surface. The surface of selected spinel ferrites was investigated by LEIS. It has been found that it is the octahedral sites which are preferentially exposed on the surface of the spinel ferrites. So the probable planes which are exposed on spinel ferrite surfaces are D(110) or B(111). This prediction using LEIS gives scope for tailor-making compounds with catalytically active ions on the surface for various catalytic reactions
    corecore