2,939 research outputs found
Effect of the spatial arrangement of agroecosystem on bee (Hymenoptera: Apoidea) diversity in potato (Solanum tuberosum) crops of Antioquia, Colombia.
The potato Solanum tuberosum is one of the most important products worldwide and is cultivated under different production systems. Its greatest diversity is concentrated in the South American Andes, where it originated; however, little is known about native pollen vectors that may mediate in sexual reproduction, possibly because potato multiplication at the commercial level is carried out through its tubers. In order to understand the effects that this type of agro-ecosystem may have on the diversity of pollen vectors, particularly bees, an inventory was raised in three types of production systems of the department of Antioquia: monoculture, association with other cultivated species, and association with patches of natural vegetation or forests, which were surveyed in transects located within the crops, on the edges and in its matrix. In this work, the difference between transects, plots, and production systems was recorded. The importance of the patch conservation of natural vegetation and the maintenance of the vegetal diversity around the crops for the preservation of wild bees was demonstrated in different production systems. Finally, it was concluded that the design of the agro-ecosystem plays an important role in the bee community structure in potato crop
CGDSNPdb: a database resource for error-checked and imputed mouse SNPs
The Center for Genome Dynamics Single Nucleotide Polymorphism Database (CGDSNPdb) is an open-source value-added database with more than nine million mouse single nucleotide polymorphisms (SNPs), drawn from multiple sources, with genotypes assigned to multiple inbred strains of laboratory mice. All SNPs are checked for accuracy and annotated for properties specific to the SNP as well as those implied by changes to overlapping protein-coding genes. CGDSNPdb serves as the primary interface to two unique data sets, the ‘imputed genotype resource’ in which a Hidden Markov Model was used to assess local haplotypes and the most probable base assignment at several million genomic loci in tens of strains of mice, and the Affymetrix Mouse Diversity Genotyping Array, a high density microarray with over 600 000 SNPs and over 900 000 invariant genomic probes. CGDSNPdb is accessible online through either a web-based query tool or a MySQL public login
Low-lying level structure of Cu and its implications on the rp process
The low-lying energy levels of proton-rich Cu have been extracted
using in-beam -ray spectroscopy with the state-of-the-art -ray
tracking array GRETINA in conjunction with the S800 spectrograph at the
National Superconducting Cyclotron Laboratory at Michigan State University.
Excited states in Cu serve as resonances in the
Ni(p,)Cu reaction, which is a part of the rp-process in
type I x-ray bursts. To resolve existing ambiguities in the reaction Q-value, a
more localized IMME mass fit is used resulting in ~keV. We derive
the first experimentally-constrained thermonuclear reaction rate for
Ni(p,)Cu. We find that, with this new rate, the
rp-process may bypass the Ni waiting point via the Ni(p,)
reaction for typical x-ray burst conditions with a branching of up to
40. We also identify additional nuclear physics uncertainties that
need to be addressed before drawing final conclusions about the rp-process
reaction flow in the Ni region.Comment: 8 pages, accepted for Phys. Rev.
Cross section measurements of 155,157Gd(n, γ) induced by thermal and epithermal neutrons
© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 - 4 and 2. 17 (41) × 10 - 4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.Peer reviewedFinal Accepted Versio
The 33S(n,α)30Si cross section measurement at n-TOF-EAR2 (CERN) : From 0.01 eV to the resonance region
The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n-TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT)
Measurement of the Ge 70 (n,γ) cross section up to 300 keV at the CERN n-TOF facility
©2019 American Physical Society.Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on Ge70, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n-TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT=5 keV to kT=100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while they are systematically smaller for neutron energies above 150 keV. We have calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60-80.Peer reviewedFinal Published versio
Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics
The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n-TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well
Measurement of 73 Ge(n,γ) cross sections and implications for stellar nucleosynthesis
© 2019 The Author(s). Published by Elsevier B.V.73 Ge(n,γ) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT=30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of 73 Ge produced in stars, which would explain the low isotopic abundance of 73 Ge in the solar system.Peer reviewe
The QUIET Instrument
The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the
Cosmic Microwave Background, targeting the imprint of inflationary
gravitational waves at large angular scales (~ 1 degree). Between 2008 October
and 2010 December, two independent receiver arrays were deployed sequentially
on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal
planes use a highly compact design based on High Electron Mobility Transistors
(HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U,
and I in a single module. The 17-element Q-band polarimeter array, with a
central frequency of 43.1 GHz, has the best sensitivity (69 uK sqrt(s)) and the
lowest instrumental systematic errors ever achieved in this band, contributing
to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter
array has a sensitivity of 87 uK sqrt(s) at a central frequency of 94.5 GHz. It
has the lowest systematic errors to date, contributing at r < 0.01. The two
arrays together cover multipoles in the range l= 25-975. These are the largest
HEMT-based arrays deployed to date. This article describes the design,
calibration, performance of, and sources of systematic error for the
instrument
- …